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1. Introduction

The pyran ring system is widely present in the animal and plant
kingdom and possesses diverse pharmacological activities. Pyran is
a six-membered oxygen heterocycle with two double bonds. Out of
the five carbon atoms of the pyran ring, four are sp? carbons and one is
sp° hybridised. The pyran ring is not a true aromatic ring. In the no-
menclature of this ring system, the position of the sp> carbon is des-
ignated by adding H or, in other words, the use of the suffix H locates
the positions of the double bonds. In structure I (Fig. 1), the carbon at
position 2 is sp® and it is named as 2H-pyran. Similarly, in the case of
the structure I, C-4 is the sp> carbon and it is designated as 4H-pyran.
Partially reduced pyrans such asIll and IV are always named using the
suffix 2H. The structure III is named as 3,4-dihydro-2H-pyran and,
similarly, structure IV as 5,6-dihydro-2H-pyran. The same terminol-
ogy is followed when the sp> carbon is replaced by a carbony! function
inthestructures Vand VL. Thus,compoundsVand Vlare named as 2H-
pyran-2-one and 4H-pyran-4-one as per the IUPAC convention. They
are also named as 2-pyranone and 4-pyranone, respectively.

Figure 1.

In this review, we have restricted our efforts to compile the
literature only to the aromatic 2H-pyran-2-one ring system present
in an isolated form. We have not covered annulated 2H-pyran-2-
ones like coumarins, chromones etc. Our intention is to provide an
overview of the presence and significance of the 2H-pyran-2-one
ring system found in various important natural products and their
therapeutic importance. We have also covered various methodo-
logies for the construction of 2H-pyran-2-ones together with their
chemical reactivity due to the pyranone ring system and the sub-
stituents attached.

Compounds with the 2-pyranone ring system have been known
for more than a century, but their versatility in organic synthesis to
generate molecular diversity was recognised only after 1960. The
presence of this ring system in plants, animals, marine organisms,
bacteria, insects and its involvement in different biological pro-
cesses such as defence against other organisms, biosynthetic in-
termediates and as metabolites have made this scaffold an
important chemical entity. Many of the 2-pyranones have been
used as precursors for the synthesis of pharmacologically active
compounds such as HIV protease inhibitors,' antifungals,? cardio-
tonics,> anticonvulsants,? antimicrobials,” pheromones,® natural
pigments,” antitumour agents,® and plant growth regulators.>1°
Microbially derived 2-pyranones, obtained from fungi of various
genera, are found to display a wide range of cytotoxic, neurotoxic
and phytotoxic properties. Various pyranones such as triacetic acid
lactone (VII) and tetraacetic acid lactone (VIII) (Fig. 2) have been
used for the construction of various natural products of biological



A. Goel, VJ. Ram / Tetrahedron 65 (2009) 7865-7913 7867

OH OH O
Jouys
O~ "0 [C 0]
Vi Vil
Figure 2.

12 13

coumarins
15

importance such as solanopyrones,!! pheromones,
and inhibitors of a-chymotrypsin,'* and elastase enzymes.
The 2-pyranone nucleus may be considered as a six-membered
cyclic unsaturated ester that displays the physical and chemical
characteristics of alkenes and arenes. Structurally, 2-pyranones
closely resemble pyrylium salts, except that one of the methine
carbons at C-2 or C-6 is replaced by a carbonyl function. The car-
bonyl oxygen in 2-pyranone (V) shows enhanced nucleophilicity
and is methylated by trimethyloxonium tetrafluoroborate to give
the pyrylium derivative.!® The aromatic potential of 2-pyranones
has been observed through their ease of electrophilic substitution
such as nitration,"” sulphonation'® and halogenation.'” The ali-
phatic character of 2-pyranones has been demonstrated through
Diels-Alder reactions, functioning as dienes and dienophiles.

2. Characteristics of 2-pyranones

The structures of 2-pyranones have been assigned by UV, IR and
NMR spectroscopy. The UV spectrum of unsubstituted 2-pyranone
shows two characteristic absorption? peaks at 216 and 289 nm.
The presence of chromophoric groups in the pyranone ring greatly
influences the UV absorption. In contrast, the isomeric counter part
4-pyranone absorbs?! at 246 and 260 nm. The wide difference in
the UV absorption peaks of 2-pyranones and 4-pyranones helps in
distinguishing both of the isomeric products.

The characteristic peak in the IR spectrum for the C=0 stretching
frequency®? for 2-pyranones appears at 1730-1704cm™! and is
sometime accompanied by less intense peaks at higher frequency?>
(1770-1740 cm ). The presence of functional groups in the pyran ring
causes red or blue shifts in the IR absorption frequency, depending
upon the nature and position of the substituent. The IR spectra of 5-
and 6-formyl-2H-pyran-2-ones show a band at 1765-1745 cm™!
which has been assigned to the formyl group absorption. The un-
usually high stretching frequency has been attributed to a tightening of
the bond due to the positive nature of the pyranone ring due to reso-
nance. The IR spectra of 4-pyranones show absorption at ~ 1667 cm ™!
in contrast to ~1730 cm™! for 2-pyranones. This difference in IR fre-
quency is possibly due to the stronger basicity of 4-pyranones. Sub-
stituents in 4-pyranones have little effect on the IR absorption maxima.

The proton NMR spectrum of unsubstituted 2-pyranone (V)
(Fig. 3) shows two complex multiplets,?* of equal intensity, at § 6.38
and 6.43 ppmdue to the C-3 and C-5 protons, and two others at 6 7.56
and 7.77 ppm for the C-4 and C-6 protons, respectively. The coupling
constants for the C-3, C-4 protons (J=9.4 Hz), C-4, C-5 protons
(J=6.3 Hz) and C-5, C-6 protons (J=5.0 Hz) have been reported.? The
proton NMR spectra of different 3-halo-substituted-2H-pyran-2-
ones?® (IX-XI, Table 1) revealed no significant changes in the
chemical shifts of the H-4, H-5 and H-6 protons, except an upfield
shift of the H-4 proton (6.52 ppm) and a downfield shift of the H-6
proton (7.95 ppm) of 3-iodo-2H-pyran-2-one (XI), due to the in-
fluence of the iodo substituent at position 3 of the pyranone ring.

H7.56
6.43 HfIH 6.38
7.77H 0 Yo

v

Figure 3.

Table 1
Chemical shifts (ppm) of ring protons and carbons in the 'H and '3C NMR of
substituted 2H-pyran-2-ones®>2 in CDCl5

4
R 5103
|
6
ko 270
1
Entry Compd (R) 'H NMR 13C NMR
H3 H4 H5 H6 C2 C3 C4 C5 C6
X 3-Cl — 747 623 748 1589 123.8 1403 106.1 1506
X 3-Br — 751 615 7.69 158.0 112.6 1440 1065 150.1
XI 3-1 — 652 601 795 1586 868 151.6 107.3 152.0
Xl 4l 641 — 629 745 160.1 1148 150.8 108.9 151.3
XII  4-Br 665 — 640 737 159.7 1186 1400 111.1 150.7
XIV 41 695 — 653 721 1589 1259 1137 1155 1499
XV 5l 630 7.34 759 1599 118.0 1464 101.2 150.1
XVI  5-Br 631 738 — 7.62 1593 117.4 1459 1007 149.6
XVII  5-1 622 738 — 7.62 1593 1183 1497 676 1533

In the case of 4-halo-substituted-2H-pyran-2-ones (XII-XIV),
the chemical shifts of the H-3 and H-5 protons increased, while that
for the H-6 proton decreased with descending order of electro-
negativity. In the case of 5-halo-substituted-2H-pyran-2-ones, vir-
tually no change in the chemical shifts of the H-3, H-4 and H-6
protons was observed.

A 3C NMR study?>?® of the 3-, 4- and 5-halo-2H-pyran-2-ones
(IX-XVII, Table 1) indicated that the C-4 and C-6 carbons resonate
downfield, compared to the C-3 and C-5 carbons, but there is vir-
tually no effect of halogen substituents on the chemical shift of the
C-2 carbon, as evident from the >C NMR data for some 2-pyr-
anones. The presence of an iodo substituent greatly influenced the
chemical shift of the carbon to which it is attached and caused it to
resonate upfield, due to its shielding effect (XI, XIV, XVII), other-
wise there is no major change in the resonances of the other car-
bons. For example, the C-3 carbon of 3-iodo-2H-pyran-2-one XI
resonates upfield at ¢ 86.8 ppm, compared to its chloro- (IX,
123.8 ppm) and bromo- (X, 112.6 ppm) derivatives. Similarly, in the
case of 4-halo-substituted-2H-pyran-2-ones, the C-4 carbon of
iodo-substituted lactone (XIV) resonated upfield at 6 113.7, com-
pared to its chloro- (XII, 150.8 ppm) and bromo- (XIII, 140.0 ppm)
counterparts. A decrease in the chemical shifts of the carbons of 4-
halo-2H-pyran-2-ones (XII-XIV) for the C-4 carbon and a marginal
increase in those for the C-3 and C-5 carbons are directly related to
the electronegativity of the halogen substituent.

The mass spectrum?®® of methyl 4-methylsulfanyl-6-(2-
thienyl)-2H-pyran-2-one-3-carboxylate (XVIII), depicted in Fig-
ure 4, shows three major peaks with the molecular ion peak at m/z
282 of high abundance. A loss of carbon monoxide from the mo-
lecular ion produces a fragment corresponding to [C11H1903S;]" at
m/z 254. A peak of medium intensity at m/z 223 has been observed,
due to loss of a methoxy radical, and further loss of cyclopropenium
ketene shows a peak at m/z 111 for thienyl carbonyl cation. This
cation with loss of CO gives a peak of low intensity at m/z 83 for the
thienyl cation. Other peaks at m/z 267 and m/z 251 are found, due to
loss of methyl and methoxy radicals, respectively. The latter peak
with loss of CO shows a peak at m/z 223.

3. Naturally occurring 2-pyranones of therapeutic
importance

Nature is a phenomenal source of biologically relevant simple
and complex molecules, which are transformed in a combinatorial
fashion through various regio- and stereoselective enzymatic re-
actions. This section will cover the therapeutically important wide
range of 2H-pyran-2-ones isolated from an eclectic array of natural
sources.
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\ | 0o eton of structurally unique 2-pyranone natural products?” in which
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a steroid moiety is attached at position five of the lactone ring, e.g.,
bufalin (1) (Fig. 5). This class of compounds is widely used in tradi-
tional remedies for the treatment of several ailments, such as
infections, rheumatism, inflammation and disorders associated with
the central nervous system.?®2° On the contrary, bufadienolide gly-
cosides represent a vital cause of mortality among cattle due to car-
diac poisoning.3®3! An extensive coverage of the bufadienolide class
of pyran-2-ones has appeared, covering the progress made up to
1997 on their isolation, characterisation and biological activities.>? In
this review article, we provide an overview of bufadienolides that
covers the majority of the natural products reported until 2005.
The plants belonging to the Crassulaceae and Hyacinthaceae
families are rich sources of bufadienolides, which show conservity in
the lactone scaffold and diversity in the steroid ring skeleton. Other
\\S % C\‘o plant families such as Iridaceae, Melianthaceae, Ranunculaceae and
m/z 223 m/z 111 m/z 83 Santalaceae are also sources of the bufadienolide class of com-
pounds. Several of the bufadienolides isolated from species of the
Figure 4. Mass fragmentation of substituted 2-pyranone. Kalanchoe (syn. Bryophyllum), Tylecodon and Cotyledon of the plant
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Figure 5.
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family Crassulaceae cause acute and subacute intoxication affecting
the central nervous system and muscular system and producing
cardiac poisoning in small animals.>®>*3 Numerous bufadienolides
(Fig. 5) such as daigremontianin (2), bersaldegenin 1,3,5-orthoace-
tate3* (3), 3-0-acetyldaigredorigenin (4), 1-O-acetylbersaldegenin
(5) and 3-0-acetylbersaldegenin®* (6) have been isolated from Ka-
lanchoe daigremontiana,>>® and these are known to exhibit im-
munosuppressive effects in animal models. The toxic principles of
Kalanchoe lanceolata have been ascribed to hellebrigenin (7), and
a rare acyclic sugar derivative lanceotoxin A (8) and lanceotoxin B>’
(9). Several other bufadienolides, e.g kalanchoside® (10), bryotoxin
A3 (11), bryotoxin B*° (12) and bryotoxin C (bryophyllin A)*° (13),

Me""

7869

have been isolated from the extracts of Kalanchoe tomentosa and
Kalanchoe tubiflorum. Recently, two insecticidal bufadienolides,
bryophyllin A (13) and bryophyllin C (14), have been isolated from
the leaf extracts of Kalanchoe pinnata, and these showed strong in-
secticidal activity against third instar larvae of the silkworm.*! The
major component of the active principles of Tylecodon wallichii was
identified as cotyledoside? (15), which possesses a tetrahydropyran
moiety linked with acetal bonds at the 1’ and 3’ positions of the
sugar moiety. Several of the tyledoside metabolites, such as tyle-
doside A%3 (16), B (17), C (21), D (18), F (19) and G (20), have been
isolated from Tylecodon grandiflorus,** and these are derived from 3-
oxo-carbohydrates, except tyledoside C (Fig. 6). The active principles

22R'=0,R2=H
23R"=B-OH,H; RZ=H
24R'"=0,R?2=0OH

0o 0
2 0 0
o \_/ on N
N/
AcO.
OH
Glu-Rha-O
25
HOH,C
HOTTE 8/
H OH O OH
M
HO- L2 20-37
HO oy
Rl RZ R3 R4 RS R6 R7
29 H OMe H H H H OH
30 =0 - H H OH H H
31 H OH H H OH H H
32 0-p-D-Gle H OAc H H H H
33 0-o-L-Rha*!'$-D-Glc H OAc H H H H
34 0-o-L-Rha*'a-L-Rha H H OH H H H
35 0-a-L-Rha*'p-D-Glc H OAc  OH H H H
36  0-3-O-Ac-a-L-Rha*'-D-Glc H H H H H H
37 0-2'-0-Ac-a-L-Rha*!p-D-Glc H H H H H H
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of Cotyledon orbiculata have been isolated and characterised as
orbicuside A (22), orbicuside B (23) and orbicuside C (24), which
possess a 4,6-dideoxy sugar moiety in their skeleton.*>

Urginea is a heterogeneous, poorly understood genus of the
subfamily Urgineoideae of the Hyacinthaceae, which is phyto-
chemically characterised by the ubiquitous presence of bufadie-
nolides. Several of the bufadienolides have been isolated from
various species of Urginea including Urginea maritima, which is
commonly known as squill.#® Recently, two new bufadienolides,
11a-acetylgamabufotalin  3-0-(4-0-B-p-glucosyl)-a-L-rhamnoside
(25) and 11a-hydroxyscilliglaucoside (26), have been isolated from
bulbs of the hexaploid U. maritima (Fig. 6).4’

Pohl et al*® have isolated two new bufadienolides, 12f-
hydroxyscillirosidin (27) and urginin (28), from Drimia robusta and
Urginea altissima, respectively. Recently, nine new bufadienolides*°
(Fig. 6, 29-37) have also been isolated from the bulbs of U. maritima
(Liliaceae).

Mimosa pudica Linn (Leguminoseae) (the so-called sensitive
plant) is found throughout India and the root of this plant is being
used in traditional remedies for the treatment of biliousness, lep-
rosy, dysentery, asthma, and leucoderma, while the seeds are used
as an effective emetic. A novel bufadienolide, hellebrigenin-3-0-a-
L-rhamnopyranosyl-(1— 4)-0-B-p-galactopyranoside (38), from the
seeds of M. pudica Linn, has been isolated (Fig. 7) and characterised
by Yadava and Yadav.>® The plant Millettia ovalifolia is commonly
known as Gauj and belongs to the natural order Leguminosae. The
stems of this plant are reported to be poisonous and possess a new
cardenolide, 4,5-dehydro-14-B-hydroxyscilladienolide-3-O-f-p-
glucopyranoside®! (39).

Three bufadienolides, hellebortin A (40), hellebortin B (41) and
hellebortin C (42), have been isolated (Fig. 7) from methanol ex-
tracts of the seeds of Helleborus torquatus.®* The structure and
relative stereochemistry of these bufadienolides were determined
unambiguously by comprehensive analyses of their 1D and 2D
NMR data. The biological activity of hellebortin A as an ecdysteroid
agonist has been assessed.

3.2. Bufadienolides from animal sources

The animal sources of bufadienolides include Bufo (toad), Pho-
tinus (fireflies) and Rhabdophis (snake), in which an abundance of

bufadienolides has been found in some species of toad. A com-
prehensive review on the isolation of several of bufadienolides
from animal sources up to 1997 has been compiled by Steyn and
van Heerden,?? and we now cover the recent findings in this area.

Bufadienolides are the major bioactive constituents of the tra-
ditional Chinese drug Ch’an Su, and these are major products of the
skin secretions of local toads such as Bufo gargarizans Cantor or Bufo
melanostrictus Schneider.’>** Several bufadienolides have been
isolated from the bodies of toads of the genus Buifo. Five new cancer
cell growth- inhibitory bufadienolides (Fig. 8), 3f-formyloxy-
resibufogenin (43), 19-oxobufalin (44), 19-oxodesacetylcinobufagin
(45), 6a-hydroxycinobufagin (46) and 1B-hydroxybufalin (47), have
been isolated from the Ch’an Su drug, which is used traditionally to
treat heart failure and cancer.>

e} e}
o] o o
N/ N/ N/
OHC OHC OH
(0) OH le)
HO H HO

(6)
A i
0" H 43 44 45
o) 0O
o (6]
N/ \_/
OH
OCOMe
o) OH
HO Y HO
H H
H OH

47
46

Figure 8.

Bufadienolides bearing epoxide substitution in the steroid nu-
cleus, particularly at the C-14 and C-15 positions, are common, but
bufadienolides bearing epoxide at the C-20 and C-21 positions
are rare. Recently, five new 20,21-epoxybufenolides (Fig. 9),
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20S,21-epoxyresibufogenin (48), 20R,21-epoxyresibufogenin (49),
3-0-formyl-20S,21-epoxyresibufogenin (50), 3-O-formyl-20R,21-
epoxyresibufogenin (51) and 3-o0x0-20S,21-epoxyresibufogenin
(52), with the rarely encountered 17p-2-pyranone ring epoxide,>®
have been isolated from toad venom.

Some of the bufadienolide class of phytotoxins such as poaefu-
sarin (53) and sporofusarin (54) (Fig. 9) have been isolated®’ from
Fusarium poae and Fusarium sporotrichiella, respectively. The phy-
totoxic symptoms of these natural products include the death of
branches of peas, beans, and tomatoes. In mammals, these phyto-
toxins caused temporary inflammation of skin, and haemorrhagic
or leukocytosic reactions.”’

3.3. Styryl-2-pyranones

Several naturally occurring 6-styryl-2-pyranones have been
isolated from various plants of the genera Piper, Aniba, Alpinia,
Miliusa and Ranunculus. A systematic study of the distribution of 6-
styryl-2-pyranones and their derivatives has been made among the
Strophariaceae and related genera.”®>° Other sources of styryl-
pyranones are from micro-organisms. Hispidin (55) (Fig. 10) has
been isolated as a metabolite from various species such as Polyporus
hispidus,5%5! Polyporus schweinitzii, Polyporus pomaceus, Polyporus
igniarius and Gymnopilus species. A hydroxystyryl-pyran-2-one,
bisnoryangonin 56, has been isolated from Pholiota squarroso-adi-
posa,®? Gymnopilus spectablis®® and Gymnopilus decurrens.®* The
hydroxylase enzyme from P. hispidus was isolated and shown to
catalyse the hydroxylation of bisnoryangonin (56) to yield hispidin
(55).8566 Other related metabolites such as leucohymenoquinone
(57) and hymenoquinone (58) have been isolated from the fruit
bodies of Hymenochaete mougestii (poriales).®”

OH OH
R? AN O I\
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X" No X 7 070
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55, R'= R% = H, R? = OH, R3= OH, 58

56, R'=R*=H,R%2=H, R3= OH
57,R'=R*=H,R2=H,R 3= OH

Figure 10.

A new polyhydroxystyryl-pyran-2-one derivative, phelligridin B
(59), together with a new pyranopyrandione, have been isolated
(Fig. 11) from the fruit bodies of the Chinese medicinal fungus
Phellinus igniarius.%8® Recently, a highly oxygenated and un-
saturated 26-membered macrocyclic metabolite, phelligridimer A
(60), has been isolated from the n-BuOH-soluble fraction of an
ethanolic extract of the fruit bodies of P. igniarius.58? Phelligridimer
A shows antioxidant activity with an ICsg9 value of 10.2 uM. The
styryl derivative, 3,4-dimethoxy-6-styryl-pyran-2-one (61), has
been isolated from the leaves and branches of the Chinese plant
Miliusa balansae (Annonaceae), which is traditionally used for
gastropathy and glomerulonephropathy.®°

Two pyran-2-one kavalactones derivatives (62 and 63) have
been reported (Fig. 11) from the root extracts of Piper methysticum
(Kava Kava),”® and two styrylpyran-2-ones (64 and 65) have been
isolated from the trunk wood and bark of an Aniba species.”!

Other synthetic and natural styrylpyrones include dihydro-5,6-
dehydrokawain derivatives (66 and 67), which showed a reduction
in the hypocotyl lengths of lettuce seedlings.”?> Two known styryl-
pyran-2-ones, 5,6-dehydrokawain’® (62), and 4/-hydroxy-5,6-
dehydrokawain” (68), have been isolated from ethanolic extracts
of the seeds of Alpinia blepharocalyx, and the latter (68) has shown
significant antiproliferative activity against murine colon 26-L5
carcinoma (EDsp: 20.7 pM) and human HT-1080 fibrosarcoma
(EDsg: 20.1 pM) cells.”®

Two new dihydrostyrylpyrones (70 and 71) and a styrylpyrone
(72), together with a known styrylpyrone (69), have been isolated
from the ethyl acetate-soluble fraction of an aqueous ethanol (1:4)
extract of the herb Polygala sabulosa,”’® which is used as a topical
anaesthetic in folk medicine. 5,6-Dihydro-2-pyranones, dihy-
dromethysticin 73 and methysticin 74, have been reported from the
root extracts of Kava.”’

Diarylheptanoids, katsumadain A (75) and katsumadain B (76),
have been isolated (Fig. 12) from the chloroform extracts of the
seeds of Alpinia katsumadai’® and display anti-emetic activity on
copper sulfate-induced emesis in young chicks.

3.4. 4-Hydroxypyran-2-ones

Hydroxypyran-2-ones constitute an important class of naturally
occurring pyran-2-ones and are of considerable interest from
a chemical and biological perspective. Fusapyrone (77) and deoxy-
fusapyrone (78) and their esters (79 and 80) (Fig. 13) have been
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Figure 12.

isolated from the rice cultures of Fusarium semitectum.”® The
compounds 77 and 78 have shown significant activity against
moulds with low toxicity and high selectivity,®® while the com-
pounds 79 and 80 have demonstrated increased toxicity. The
compounds YM-202204 (81) and S39163/F-1 (82) have been iso-
lated from a culture broth of the marine fungus Phoma sp.
Q60596.8! The m-conjugated 4-hydroxypyran-2-one (83), isolated
from the culture broth of Epicoccum purpurascens, displays telo-
merase inhibitory activity.3? The syntheses of the 4-hydroxypyran-
2-one skeleton, such as 4-hydroxy-6-methyl-2-pyranone (84)%3
and 4-coumaroyltriacetic acid lactone®* (85), have been reported
from various Gerbera hybrida, 4-coumaroyl-CoA, chalcone syn-
thases and related enzymes. 6-Acetonyl-4-hydroxypyran-2-one
(86) has been isolated from stilbene synthase and ascosalipyrone
(87) from the fermentation broth of A. salicorniae® and fistupyrone
(88) from Streptomyces sp. TP-A0569 (Fig. 13).8¢ A novel polycyclic
polyketide, A-74528 (89), isolated from the culture broth of Strep-
tomyces species SANK 61196, has been characterised by NMR

techniques including natural abundance INADEQUATE, relative
configuration and the conformation by analyses of the NOEs
(Fig. 14). The polyketide A-74528 (89) inhibits purified human 2',5’-
oligoadenylate phosphodiesterase with an ICsg value of 34 pg/ml.8”

Novel N-alkenylcarbamate pyrones, such as myxopyronins
A (90) and B (91) (Fig. 15), have been isolated®® from a gliding
bacterium Myxococcus fulvus Mx f50. Other structurally related
corallopyronins A (92), B (93), and C (94) have been isolated from
Corallococcus coralloides Cc ¢127.3° Myxopyronins A (90) and B (91)
display activity against a wide range of Gram-positive bacteria, but
were found to be less active against Gram-negative bacteria and
resistant to yeasts and moulds.?®

Myxopyronins had no acute toxicity for mice up to 100 mg/kg
(s.c.). The corallopyronins (92-94) are found to inhibit bacterial RNA
polymerases,®! both in whole cells, and with the isolated enzyme.

Three new 6-substituted-pyran-2-one polyketide metabolites,
phaeochromycins A-C (95-97), have been isolated (Fig. 16) from the
fermentation broths of an actinomycete designated Streptomyces
phaeochromogenes LL-P018.°2 Phaeochromycins A and C were
found to be weak inhibitors of MAPKAP kinase-2 with ICsq values of
39 and 130 uM, respectively.

Four new pyrano-diterpene antibiotics, sesquicillins B to E (99-
102, Fig. 17), isolated from the culture broth of Albophoma species
FKI-1778, together with the known sesquicillin A (98), display
moderate inhibitory activity against the growth of Artemia salina
(brine shrimps) and Jurkat cells.®®

Five chromones and a pyran-2-one, chaetoquadrin F (103)
(Fig. 18), have been isolated from the ethyl acetate extract of an
Ascomycete Chaetomium quadrangulatum guided by monoamine
oxidase (MAO) inhibitory activity.”* The marine natural product
(+)-pectinatone (104) (Fig. 18), isolated from Siphonaria sp. mol-
luscs displays antibacterial, antifungal, and cytotoxic activity.%>-%7
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Figure 14.

Five new antibiotics, NFO0659A1 (105), A2 (106), A3 (107), B1
(108) and B2 (109), having 4-hydroxy-2-pyrone and 4,5-seco-tri-
cyclic diterpene moieties (Fig. 18), have been isolated from a culture
mycelium of Aspergillus species NF 00659 and exhibit potent
antitumour activities against human ovarian carcinoma A2780 and
human colorectal adenocarcinoma SW480 cells, but were found to

O OH

90, R = Me
91, R=Et
«_OH

be inactive against Gram-positive and negative bacteria, yeasts and
fungi at 1000 pg/ml®*?° A new 2-pyranone derivative, epi-
medokoreanone A (110) (Fig. 18), has been isolated from the aerial
parts of Epimedium koreanum Nakai.!%®

Neocosmospora vasinfecta E. F. Smith is a pathogen which causes
root- and fruit-rot and seedling damping off in the Malvaceae,
Leguminosae, Piperaceae and Cucurbitaceae families. Two new
metabolites, neovasipyrones A and B (111 and 112) (Fig. 18), have
been isolated from the phytopathogenic fungus Neocosmospora
vasinfecta NHL2298.101

A 4-hydroxy-2-pyranone, davallialactone (113) (Fig. 19), has
been obtained from the rhizomes of a fern, Davallia mariesii
Moore.!%? The absolute configuration of 113 was determined by
circular dichroism and found to be 5'R,6'S.

3.5. 6-Alkyl/aryl-pyran-2-ones

The naturally occurring 6-alkylpyran-2-ones have been isolated
from various strains of microorganisms of the genus Trichoderma.

X NHCOOMe

Figure 15.



7874

A. Goel, VJ. Ram / Tetrahedron 65 (2009) 7865-7913

OH OH
B [
O oo 0" o
HO O HO
HO o) OH
95 96 97
Figure 16.
\ Me \ CH,OH
R= = =
H Me H Me
sesquicillin A B C D E
98 99 100 101 102
Figure 17.
OH OH
Mer | OH | N
o“ o N o~ "0
103 104
OH OH U1 = (E,E)-EtCH(Me)(CH=CH),CO
HO_\ Me U2 = (E,E,E)-EtCH(Me)(CH=CH);CO
| o N NF00659 A1 105: R' = U1, R? = OH,
Me™ "O" O M B e 1 NF00659 A2 106: R' = U2, R2 = OH,
110 e e NF00659 A3 107: R" = Ac, R? = OH,

111, R = 0-OH, p-H
112, R = o-H, B-OH

NF00659 B1 108: R' = U1, R2=H,
NF00659 B2 109: R' = U2, R2=H

Figure 18.

113

Figure 19.

6-Pentylpyran-2-one (114) (Fig. 20) was the first metabolite identi-
fied as a fungal product of Trichoderma viride.'®® The 2-pyranone
(114) possesses a coconut aroma'® and has been reported to be
a component of peach'% and nectarine!®6-198 essence. The flavour-
ant properties of the 6-alkylpyran-2-ones have attracted great in-
terest in the food industry. Another 6-alkenylpyran-2-one (115)

70 0”0 7 o7 0" 7
114 115 116

Figure 20.

(Fig. 20), isolated as a metabolite from a strain of T. viride,'*® has been
identified as a queen pheromone of the red fire ant, Solenopsis invicta
(Buren), and of male mandibular gland secretions of ants of the genus
Camponotus.''® 6-Propenylpyran-2-one (116) (Fig. 20), named sibir-
inone, has been isolated from Hypomyces semitranslucens and syn-
thesised by [4+2]-dimerisation of the crotonyl-derived ketene.!!

6-n-Pentylpyran-2-one (114) was also isolated, together with
cyclopentenones, from a marine algicolous fungus of the genus
Myrothecium, and exhibited tyrosinase inhibitory activity with an
ICsp value of 0.8 M. Currently, it is being used as a functional
personal-care product for skin-whitening effects and for preventive
and therapeutic effects on local hyperpigmentation diseases.!

Recently, a new 6-(4-oxopentyl)pyran-2-one (117), along with
6-pentylpyran-2-one (Fig. 21) have been isolated from the cultural
filtrate of T. viride.!3

OMe
w g | oo
O (6] 0~ o
117 118

Figure 21.
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A new methyl 4-methoxy-6-pentylpyran-2-one-3-carboxylate, o)
daldiniapyrone (118), together with several polycyclic compounds, Me
have been isolated from an EtOAc extract of the fruit bodies of P MeO.
Daldinia concentrica.'™* MeO : HO |
Bioassay-guided isolation of four pyran-2-ones from cultures of R' R? 0" "o
Me

an unidentified filamentous fungus LL-11G219 has produced four
novel alkyl-2-pyranone fermentation products, 11G219a (119),
11G2196 (120), 11G219y (121) and 11G2195 (122) (Fig. 22).1"> Sev-
eral closely related compounds produced by the fungal culture LL-
11G219 have been isolated which possess androgen-like activity.!’®

A new species of Pseudomonas sp. F92591, isolated from a ma-
rine sponge, was found to produce naturally occurring pyran-2-
ones, pseudopyronines A (123) and B (124) (Fig. 23). These naturally
occurring pyran-2-one antibiotics were found to be degraded to
3-furanone.!'®

OH OH
/Wfl/\/\ %
0”0 [oJ@Ne)
123 124
Figure 23.

The metabolite 124, which has been previously isolated'!” from
the fermentation culture broth of a bacterial strain Pseudomonas
fluorescens, exhibited an MICsg value of 2.5 ug/ml against a Staphy-
lococcus aureus strain, and >64 pg/ml against Escherichia coli. The
level of expression of the rpoE gene affected the biological activity
of 124 against an E. coli laboratory strain. When the rpoE protein
was constitutively overexpressed in E. coli, the MICsq value of 124
was found to be 5 pg/ml.

Four new 2-pyrone-containing propionates (125-128) (Fig. 24),
have been isolated from the mantle extract of Placida dendritica,
a Mediterranean sacoglossan that lives upon the green alga Bryopsis
plumosa.l'®

OMe OMe
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Figure 24.

3.5.1. Annularins

Freshwater aquatic fungi are potential sources of new bioactive
secondary metabolites. Five new bioactive secondary pyran-2-one
metabolites, annularins A-E (129-133) (Fig. 25), have been isolated
from organic extracts of the freshwater fungus Annulatascus tri-
septatus (A-353-1B).""° Some of the compounds, annularins A, B
and C exhibited antibacterial activity.

A culture extract of the fungal strain VKM-3750 has produced
a new 6-alkylated-pyran-2-one metabolite, nosporin B (134), using
multistep chromatography. The structure of 134 was assigned on
the basis of spectroscopic techniques.!?°

129, R' = Me; RZ = OH

130, R' = CH,0OH; R2=H 134
131, R' = CH,OH; R2 = OH

132,R'=Me; RZ=H

133,R'=H; R2=H

Figure 25.

3.5.2. Pyrenocines and macommelins

Naturally occurring pyran-2-ones, such as pyrenocine A (135),
pyrenocine B (136) and pyrenocine C (137) (Fig. 26), have been
isolated from Pyrenochaeta terrestris, a causal agent of onion pink
root disease. Pyrenocines A (135) and B (136) were phytotoxic,
preventing the germination of lettuce, rice and onion seeds, and
inhibiting root elongation in seedlings.'*!~'>> The macomellins
(138-141) have been isolated from Macrophoma commelinae, a ca-

sual agent of fruit rot disease of apple and other plants.'?*
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Figure 26.

3.5.3. Elijopyrone

Elijopyrones A-D (142-145) (Fig. 27), have been isolated from
a cultured marine actinomycete (isolate CNB-880). The producing
strain has been obtained from a sediment collected from the San
Elijo Lagoon in Cardiff, California.'?>

R "O0” “O

142, R = CH(OH)Me
143, R = COMe
144, R = CH,Me
145, R = CH=CH,

Figure 27.

Marine bacteria are considered to play a central role as symbi-
onts of most marine invertebrates and they also represent one of
the most novel biomedical resources remaining to be explored.
Three novel cytotoxic acetogenins, lagunapyrones A-C (146-148)
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(Fig. 28), have been produced!?® in a seawater-based medium by an

unidentified marine Actinomycete (culture CNB-984) isolated from
sediment collected in the Agua Hedionda Lagoon in Carlsbad, Cal-
ifornia. Lagunapyrone B (147) shows a modest in vitro cytotoxicity,
ED50=3.5 pg/ml, against the human colon cancer cell line HCT-116.

146, R = Me
147, R=Pr
148, R = Bu

Figure 28.

3.5.4. Colletopyrone and helipyrone

The dipyran-2-one class of compounds, colletopyrone (149) and
helipyrone (150) (Fig. 29), have been isolated from a pathogenic
fungus Colletotrichum nicotianae, a causative agent of tobacco
anthracnose,'”” and a higher plant Helichrysum italicum,
respectively.!?8

O H”

149, R = Me
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Figure 29.

3.5.5. Phacidin

Phacidin (151) (Fig. 30), isolated from the canker fungus Poteb-
niamyces balsamicola,'?*13% displayed potent antifungal properties
by inhibiting the growth of fungi in all the major groups. It also
showed inhibitory activity against dermatophytes such as Epi-
dermophyton floccosum, Trichophyton mentagrophytes, and Tricho-
phyton rubrum, but was ineffective against opportunistic fungi such
as Aspergillus species.

OMe
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Figure 30.

3.5.6. Elasnin

Elasnin (152) (Fig. 31), has been isolated from Streptomyces
noboritoensis and showed an inhibitory effect on human sputum
(leukocyte) elastase.*32 Biosynthetic studies using [1,2-'>Cy]-
acetate as a labelled precursor suggested that elasnin (152) has been
derived from twelve molecules of acetate.’>>134 The LDsq values of
152 were found to be 290 mg/kg (ip) and >1000 mg/kg orally.!!

Figure 31.

3.5.7. Aszonapyrone A

Aszonapyrone A (153) (Fig. 32), isolated from Aspergillus
zonatus, has shown antibacterial activity against S. aureus with an
MIC value of 6.3 pg/ml 3° It has been biosynthesised by a combi-
nation of both the mevalonate-geranylgeranyl-pyrophosphate, and
the acetate-polyketide routes.!>

AcO OH
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Figure 32.

3.5.8. Taiwapyrone

A 5,6-disubstituted 2-pyranone, taiwapyrone (154) (Fig. 33), has
been isolated from the mycelium of Cercospora taiwanensis, grown
on potato-agar. The structure was determined by spectroscopic

means.l36

(O]
154

Figure 33.

3.5.9. Lehualides A-D

Marine sponges of the family Plakinadae are known to be rich
sources of structurally unique and biologically active metabolites. A
new pyran-2-one, lehualide A (155) together with three pyran-4-
ones, lehualides B-D (156-158) (Fig. 34), have been isolated from
a Hawaiian sponge of the genus Plakortis.’>’

Three new 2-pyranones, opuntiol (159), opuntioside (160) and
4-ethoxy-6-hydroxymethylpyran-2-one (161) (Fig. 35), have been
isolated from aqueous ethanolic extracts from the fresh stems of
a cactus Opuntia dillenii Haw. The ethanolic extract showed potent
radical-scavenging activity.!*8

3.5.10. Aloenin

Several naturally occurring 6-arylated-pyran-2-ones, aloenin
aglycone (162), aloenin (163), aloenin 2’-p-coumaroyl ester (164),
10-0-B-p-glucopyranosyl aloenin (165) and aloenin B (166)
(Fig. 36), have been isolated from a chloroform-acetone extract of
Kenya aloe.®® 6-[(5-Methyl-6-ethyl-4-hydroxypyrone-3-yl)me-
thylene]glabranine (167) (Fig. 36), a new pyran-2-one, has been
isolated and identified from the whole plant of Anaphalis sinica
Hance 140

Aloe vera has been extensively used in health foods, cosmetics
and traditional medicine. Various studies have shown the phar-
maceutical activities of compounds isolated from Aloe, including
antiinflammatory, antioxidative, antiaging, anticancer and immu-
nomodulatory properties. Two new 2-pyranone-based dihy-
drocoumarin derivatives, 168 and 169 (Fig. 37), have been isolated
from Aloe vera,'#! and these compounds demonstrated antioxidant
activity against superoxide and hydroxyl radicals.

3.6. 6-Alkenyl-pyran-2-ones

3.6.1. Gibepyrones

Six new gibepyrones A-F (170-175) have been isolated (Fig. 38)
as metabolites from Gibberella fujikuroi.'*? Among these, gibepyr-
ones A (170) and B (171) exhibit growth inhibitory activity against
several microorganisms.
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3.6.2. Nectriapyrone and related compounds

Nectriapyrone (176), isolated from Gyrostroma missouriense
and Gliocladium vermoesenii,'*> has been reported (Fig. 39) to
display antibacterial activity against S. aureus.!** A structurally
related fusalanipyrone (177) has been isolated from Fusarium
solani'*® and was found to be inactive against Staphylococcus and

E. coli, but weakly active against Candida albicans and Trichoderma
145

koningii.

O-p-coumaroyl

Figure 36.
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Two new 6-alkenyl-5-methylpyran-2-ones, herbarin A (178)
and herbarin B (179), have been isolated'® from the sponges
Aplysina aerophoba and Callyspongia aerizusa, and display
inhibitory activity against A. salina.

3.6.3. Citreopyrones

Six new metabolites, citreopyrones A-F (180-185), have been
isolated (Fig. 40) from the mycelium of a hybrid strain KO 0092
derived from P. citreoviride B IFO 4692 and 6200, and KO 0141 de-
rived from P, citreoviride B IFO 4692 and Penicillium pedemontanum
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Figure 40.
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IFO 9583. Citreopyrones A, B and C inhibited the growth of hypo-
cotyls of lettuce seedlings.'¥

3.6.4. Luteoreticulin

Luteoreticulin 186 has been isolated as a toxic metabolite of
Streptomyces luteoreticuli.*® A recent analogue of luteor-
eticulin,'®150 griseulin (187), has been reported (Fig. 41) to display
inhibitory activity against nematodes (P. redivivus, C. elegans and H.
glycines) and mosquitoes (A. aegyptii).>!
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Figure 41.

Several novel 2-pyranones, namely 188-194, have been isolated
(Fig. 42) from fruit bodies of the fungus Ganoderma lucidum, which
is a major constituent of a traditional Chinese drug ‘Lin-Chi’ used in

the treatment of mild ailments and to promote good health.>?
OMe
/7y OMe RLALR'
0 N Me |
| | [ele}
O (6] R3
188 189, R' = Me, R? = CHO, R3 = Me

190, R' = Me, R? = CHO, R® = COOMe
191, R" = Me, R2 = CH,0OH, R% = Me

192, R' = CH,OH, R2 = CHO, R® = COOMe
193, R' =H, RZ = CH,OH, R® = Me

194, R' = Me, R2 = CH,0H, R® = CH,OH

Figure 42.

3.6.5. Citreoviridin and derivatives

The discovery of citreoviridin (195) was as a result of the search
for the cause of acute cardiac beriberi, which occurred due to the
eating of mouldy rice in East-Asian countries in the early part of the
last century. Citreoviridin (195) has been isolated as a toxic me-
tabolite from the active principle of the mould Penicillium cit-
reoviride (Penicillium toxicarium)'>> and found to be responsible for
the cause of cardiac beriberi. Several derivatives of citreoviridin,

OMe
R! R2 Me
= ] HO_  p.OH
oo NN «Me
Me Meo H
195, R'=H, R?=Me
196, R' = Me, RZ=H
197, R' = Me, R2 = Me
OMe OMe
Me | X
0”0
O R
201, R=H
202, R = Me

such as citreoviridins C (196) and D (197), citreoviridinol (198),
isocitreoviridinol (199) and secocitreoviridin (181), have been iso-
lated (Fig. 43) from various species of Penicillium.1>4-160

Three new metabolites, citreoazopyrone (200) and two 6-ep-
oxy-2-pyranones (201) and (202), have been isolated (Fig. 43) from
the mycelium of a hybrid strain KO 0011 derived from P. citreoviride
B IFO 6200 and 4692.'8! Citreoazopyrone (2000) inhibited the
growth of hypocotyls of lettuce seedlings by 83.5% relative to the
control at 12.5 pg/cm?.

3.6.6. Aurovertins

The aurovertins are a group of mycotoxins, which are closely
related to citreoviridin. Aurovertins A (203), B (204), C (205), D
(206) and E (207) have been isolated (Fig. 44) from the mycelial
extracts of Calcarisporium arbuscula.'®2-164 The aurovertins did not
show any antibiotic activity against bacteria or pathogenic fungi,
but showed toxicity against a number of animals. The oral LDsg
value of 204 for mice is 1.65 mg/kg and iv. injection of 1 mg/kg
caused death in rabbits in less than 15 min, and in dogs in less than
50 min. Aurovertin A (203) was a powerful inhibitor of ADP-stim-
ulated respiration, but was inactive as an inhibitor of ATPase
activity. Aurovertins B (204) and D (206) have been shown to in-
hibit oxidative phosphorylation.

A polyene pyran-2-one, aurovertin E (207), has been isolated
along with aurovertin B (204) from the culture mycelia of the ba-
sidiomycete Albatrellus confluens.!®®> Recently a new secondary
metabolite aurovertin F (208) has been isolated from the fermen-
tation broth of the entomopathogenic fungus Metarhizium
anisopliae.'%®

3.6.7. Asteltoxin and citreomontanin

Asteltoxin (209), a mycotoxin, was first isolated from toxic
maize meal cultures of Aspergillus stellatus, while the polyene-
pyrone, citreomontanin (210), has been isolated (Fig. 45) from P.
pedemontanum and Penicillium pulvillorum.'71%8 The structures of
209 and 210 have been confirmed by X-ray crystallography, which
showed that the double bonds exist in an all E-configuration.'®®
Both 209 and 210 have been evaluated for their effects on ATPase
activity in E. coli BF;. The pyranone 210 was found to be completely
inactive, while 209 demonstrated enzyme inhibition, but it did not
enhance the binding affinity of BF; for inorganic phosphate.

Rosellisin (211), a co-metabolite of the macommelins, has been
isolated (Fig. 46) from Hypomyces rosellus.”’%!"1 Macrophin (212)
and macrophic acid (213) that are structurally related to rosellisin
have been obtained!”? from M. commelinae. A fungal metabolite
macrophin (212) has been isolated'”? as an immunosuppressive

OMe

Figure 43.
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203, R' = H, R2 = Me, R® = R* = COMe,
205, R' = R2=R*=H, R® = COMe,

206, R' = OH, R? = Me, R® = COMe, R*=H,
207, R'=R3=R*=H, R2=Me

MeO
Me
z
| PR A
o] (6]
204, R'=OAc, R2=H
208, R' = OH, R = OH

Figure 44.
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Figure 46.

principle from an Ascomycete, Diplogelasinospora grovesii. The 1Csq
values for macrophin (212) were found to be 0.4 and 0.3 pg/ml
against concanavalin A- and lipopolysaccharide-induced pro-
liferations of mouse spleen lymphocytes, respectively. Islandic acid
(214), another natural pyran-2-one, has been isolated (Fig. 46) from
Penicillium islandicum.””! Rosellisin (211) has been found to be ac-
tive against Staphyloccoccus aureus at low concentrations, while 214
exhibited cytotoxicity against Yoshida sarcoma cells in tissue cul-
ture, and inhibited the transfection of Bacillus phage M.!”!

OMe
OHC | N OR
| [OJEN)
Me

215, multiforisn AR=H
216, multiforisin B R = COMe
219, multiforisin E R = Me

3.6.8. Multiforisin

Fujimoto et al.””3>-17> have isolated five new metabolites, mul-
tiforisins A-E (215-219) (Fig. 47) from the Ascomycete Gelasino-
spora multiforis. The immunosuppressant effects of these
compounds were determined using mouse spleen cells induced to
proliferate with either concavalin A or lipopolysaccharide (LPS). The
ICs59 values for the multiforisins A to E (215-219) and dihy-
dromultiforisin A were 0.6, 24, 44, >50, 5 and 13 pg/ml (concavalin
A), and 0.6, 22, 27, 37, 4 and 9 pg/ml (LPS).

H,,,OMe OMe
O N OAc
+ Men., |
H O~ "0

217, multiforisin C

OMe
R1 | AN RZ
| o” "0
Me
220, multiforisin G R' = OH, R? = OAc
221, multiforisin H R' = OAc, R2 = OH
222, multiforisin | R = OH, R? = OH

Figure 47.
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Figure 48.

Interestingly, there was some differential toxicity in the sense
that the ICs5g value for multiforisin A against KB cancer cells was
10 pg/ml.

Recently, three more 2-pyranones, called multiforisins G (220),
H (221) and I (222), have been isolated'”® from an Ascomycete,
Gelasinospora heterospora. Among them, 220 and 221 have proved
to be the immunosuppressive components of the fungus. Com-
pounds 220-222 have also been isolated from G. multiforis, together
with multiforisin A (215), which was formerly isolated from this
fungus and showed immunosuppressive features.

3.6.9. Wailupemycins

Several bacteriostatic polyketides, wailupemycins A-C (223-225)
and three 3-epi-5-deoxyenterocins 226-228, have been isolated®>176
(Fig. 48) from a Streptomycete, cultured from shallow-water marine
sediment. Compounds 223 and 226 showed antimicrobial activity
against E. coli and S. aureus, respectively. Wailupemycin D (229) has

recently been isolated as a minor component from the marine actino-
mycete, Streptomyces maritimus."”” Recently, fermentation of S. mar-
itimus provided three new polyketides wailupemycins E-G (230-232),
which have been characterised by HRMS and 2D NMR spectroscopy.'’

A novel polyketide, mutactin (233),"”° together with dehy-
dromutactin (234)'%° and SEK34b'8! (235), have been isolated from
recombinant strains of Streptomyces coelicolor A3(2), Streptomyces
roseofulvus and Streptomyces glaucescens (Fig. 48).

Pedras and Chumala'®? have analysed a large number of black-
leg-causing fungi and isolated the secondary metabolites, phoma-
pyrones D (239), E (240) and G (241), together with phomapyrone
A83 (236), phomenin B84 (237) and infectopyrone!®® (238), pro-
duced by a new group of isolates of the fungal pathogen, Lep-
tosphaeria maculans (Desm.) Ces. et de Not., asexual stage Phoma
lingam (Tode ex Fr.) Desm (Fig. 49).

The red pigments, auxarconjugatins A (242), B (244) and C (245),
have been isolated from the mycelia of Auxarthron conjugatum, an

240 241

Figure 49.



A. Goel, VJ. Ram / Tetrahedron 65 (2009) 7865-7913 7881

ascomycetous fungus belonging to the Onygenaceae family. The
structures of auxarconjugatins A (242), B (244) and C (245), in-

cluding the stereochemistry of the conjugated tetraene, were
established by spectroscopic analyses. Compound 243 was also
isolated from the mycelial extract of A. conjugatum, along with 242

(Fig. 50). Compounds 242 and 243 are stereoisomers of aux-
186

arconjugatin A, the 3’-cis- and all-trans form, respectively.

243, R' = Me, R2=ClI
244, R'=H,R2=Cl
245 R'=Me, R2=H

Figure 50.

A pyrrolyloctatetraenyl-a-pyrone, rumbrin (246), has been iso-
lated (Fig. 50) from the mycelia of Auxarthron umbrinum'®” and acts
as a cytoprotective substance and an antioxidant.'®® It has one cis-
double bond at C-1’ in the conjugated tetraene residue, but might
be in equilibrium with the all-trans form as in the case of 242 and
243. The biological activities of 242, 244 and 245 were speculated to
be similar to that of 246.

3.6.10. Solanopyrones

Solanopyrones A (247), B (248) and C (249) have been isolated
(Fig. 51) from Alternaria solani, the causal organism of early blight
disease of tomato and potato. Solanopyrone A (247) induced a po-
tato-leaf necrotic lesion at concentrations of 100 pg/ul.'8°

247, R' = CHO, R? = OMe
248, R' = CH,0H, R? = OMe
249, R' = CHO, R? = -NHCH,CH,OH

Figure 51.

Three new 2-pyranone secondary metabolites, solanopyrones E
(250), F (251) and G (252), have been produced (Fig. 52) by an un-
identified filamentous marine fungus, isolated'° from the surface of
the calcareous green alga, Halimeda monile. These solanopyrones
exhibited substantial antialgal activity against the marine unicel-
lular alga, Dunaliella sp., at concentrations as low as 100 pg/ml.

H R

250, R'=0OH,R2=H
251, R'=H, R2=OH
252, R'=H,R2=H

Figure 52.

Another related a-pyrone ACRL toxin II (253) has been reported
from Alternaria citri (Fig. 53).1°' In a screening programme for
fungal inhibitors of glucocorticoid- mediated signal transduction,
sesquicillin (254), isolated'®? from an Acremonium species, inhibi-
ted glucocorticoid-induced reporter gene expression with an ICsg
value of 0.1-0.5 pg/ml.

253 254

Figure 53.

Two unusual tetrahydrofurylhydroxypyran-2-ones, tetillapyr-
one (255) and nortetillapyrone (256), have been isolated from the
marine sponge, Tetilla japonica, in the Bay of Thailand. The structure
of tetillapyrone has been established by X-ray crystallography
(Fig. 54).1%3

Figure 54.

3.7. 6-Carboxylic acid pyran-2-ones

A new lignan tricarboxylic acid, erimopyrone (257), has been
isolated from the liverwort, Moerckia erimona, and its structure was
established as [1R,2S]-1-(6-carboxy-2-oxo-2H-4-pyranyl)-6,7-
dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid by spec-
troscopic methods (Fig. 55).1°% A novel 3-naphthyl-2-pyranone,
scapaniapyrone A (258), has been isolated as a polar constituent of

Scapania undulata.'®
HO: l ' :COOH HO g ‘ COOH
HO COOH HO
7 oS
l o~
O

o] COCOH
COOH
257 258

Figure 55.

3.7.1. Stizolobic acid and stizolobinic acid

An amino-acid-based natural pyran-2-one, stizolobic acid (259),
has been isolated from Stizolobium hassjoo (velvet bean) and other
species of Stizolobium and also from Mucuna irukanda (Legumino-
seae). A related compound, stizolobinic acid (260), has been iso-
lated as a co-metabolite from S. hassjoo.!°® These compounds have
additionally been isolated from the fungus, Amanita pantherina
(Fig. 56).197

The biosynthetic origin of both 259 and 260 revealed that these
compounds are derived from tyrosine via DOPA, with extradiol
cleavage of the aromatic ring of DOPA being invoked in order to
explain the formation of the pyranone ring.198-201
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3.7.2. Muscaurin Il

An orange pigment, Muscaurin I (261), has been isolated (Fig. 56)
from the caps of Amanita muscaria (Fly Agaric).2%? The thalloid liv-
erwort, Dumortiera hirsute, is a subcosmopolitan species occurring in
oceanic and warm-to-tropical areas and three carboxylate 2-pyrone
derivatives, dumortins A-C (262-264), and a new flavone glycoside

have been isolated (Fig. 57) from this species.??3
OH OH
OH OH
OH
Z OH
‘ A O | A OH
|
HOOC (O] HOOC™ O "0 HOOC™ "O" "0
262 263 264
Figure 57.

3.8. Unusual pyran-2-ones

Two unique pyran-2-ones (265) and (266) embedded into
a polyunsaturated macrocyclic structure were isolated (Fig. 58)
as secondary metabolites from the red alga, Phacelocarpus la-
billardieri.?%4

265 266

Figure 58.

Nitidon (267), a highly oxidised pyranone derivative produced
by Junghuhnia nitida exhibits antibiotic and cytotoxic activities and
induces morphological and physiological differentiation of tumour

cells at nanomolar concentrations (Fig. 59).2%°
_CH,
7 o Z -C
| o |
0”0 - CH,OH
267 O 268
Figure 59.

COMe
COOEt NG~ “COOEt Me

269 272

Metabolites of the wood rot decay fungus, Sistotrema raduloides (P.
Karst) Donk, have been reported to produce a unique allene-based
a-pyrone, sistopyrone (268), which is very unstable and readily po-
lymerises in the presence of air to give a black insoluble material.%®

4. Synthesis of pyran-2-ones

There are three possible strategies (a, b and c) for the con-
struction of the pyran-2-one ring system based on retrosynthesis,
as depicted in Scheme 1. Among these, route a is commonly prac-
ticed for the synthesis of 2-pyranones.

.C
¢ ¢
_Cs i
RS0  COOR
\
+ .C.
¢ & b ¢ ¢ g%
. — 2 » __Cs. COOR C...Cs
R%0o  Coor R™0 R™ 0770
C
C.
R-C, +¢ ¢
o COOR
Scheme 1.

4.1. Condensation-cyclisation reactions

The most common strategy for the synthesis of the 2H-pyran-2-
one ring system is through the acid-catalysed condensation-cyc-
lisation of P-ketoesters. Thus, ethyl acetoacetate (269) in the
presence of HCI gas undergoes self-condensation followed by cyc-
lisation to yield 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one®’
(270) (Scheme 2). Deacetylation of 270 in sulfuric acid yields 4-
hydroxy-6-methyl-2H-pyran-2-one (271).

OH OH
Me~ 0" "O Me~ O "O
269 270 271
Scheme 2.

Base-catalysed condensation of ethyl acetoacetate (269) with
ethyl ethoxymethylenecyanoacetate (272) yields ethyl 6-methyl-
2H-pyran-2-one-3,5-dicarboxylate (274) via the intermediate 273
(Scheme 3).

EtOOC COOEt EtOOC COOEt
CHOEt  NaOEt N H20 S
CH, + )J\ —_— | E—

0~ >NH Me (O X6

273 274

Scheme 3.
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Coumalic acid (277), a 2H-pyran-2-one-5-carboxylic acid, has
been synthesised?%® by the acid-catalysed selfcondensation of for-
mylacetic acid (276), obtained from the decarbonylation of
a-hydroxysuccinic acid (275), followed by dehydration (Scheme 4).
Decarboxylation of coumalic acid (277) in the presence of Cu
powder leads to the unsubstituted 2H-pyran-2-one (278) and is an
example of the route b synthetic strategy.

HOHC-COOH _H80,
CH,COOH oleum
275

CHy(COR), + PhsP=CHCOOEt

279 290

Scheme 8.

[CHzcooj fl =,

278

Scheme 4.

A recent modification of the methodology for the preparation®%?

of 2H-pyran-2-ones (281) involves the base-catalysed condensa-
tion of 1,3-dicarbonyl compounds (279) with acetylenic esters
(280) (Scheme 5).

R1
R
NaOEt oc A
R-COCH,COR + R!-CEC-COOEt ———» |
R0 N0
279 280 281
Scheme 5.

An alternative route for the synthesis®!° of 6-alkyl-4-hydroxy-2H-
pyran-2-ones (285) has been developed by generating the dianion
(283) of the B-ketoester 282 by LiN(Pr'),, followed by condensation
with an ester (Scheme 6). Narasimhan and Ammanamanchi®'®
prepared a 6-aryl-4-hydroxy-2H-pyran-2-one (285, R’'=Ph) by heat-
ing a B,0-diketoester (284, R=Et, R'=Ph) under vacuum in good yield.
This efficient method for the synthesis of 2H-pyran-2-ones belongs to
the example to the route c synthetic strategy.

LiN(PrY), _RCOOEt
COOR —— 5 COOR
)l\/ |:)K/ COOR CF3COOH

282

4.3. From o,p-unsaturated enones

a,p-Unsaturated enones are important intermediates for the
construction of 2-pyranones and are usually obtained by the acetyl-
ation of olefins.>>?™ Oxidation of pent-4-en-2-ol with Corey’s
oxidant?’® and oxidative cleavage of phenylselenolates?!® yield
unsaturated enones. 1,2-Allenic ketones may be considered as a,f-
unsaturated ketones and have broad applications in organic
synthesis.?”

Electron-deficient allenes (292) are prone to nucleophilic
attack to afford P-substituted-f,y-unsaturated functionalised
alkenes (294) on reaction with diethyl malonate (293) using
K>COs3 as a catalyst at room temperature and the alkenes (294)
cyclise to yield highly substituted 2H-pyran-2-ones®'® (295)
(Scheme 9).

1,3-Dioxin-4-ones (cyclic enones) have been used as synthons
for the synthesis of various classes of compounds. 2,2-Dimethyl-6-
(2-oxoalkyl)-1,3-dioxin-4-ones (296), under thermal or photo-
chemical conditions, undergo ring opening to form a ketene
intermediate, followed by cyclisation to yield the 6-substituted-4-
hydroxy-2-pyrones?!® (285) (Scheme 10).

OH

Jo!
(XN 0]
285

(CF3CO)20

Scheme 6.

For introducing an alkyl group at position 5 of the 2-pyranone
ring, a different strategy has been followed through base-catalysed
acylation at the y-position of the a,f-unsaturated esters (286) with
diethyl oxalate (287). The acid-catalysed condensation of the
resulting intermediate (288) leads to the 5-alkyl-2H-pyran-6-carb-
oxylic acids, which on decarboxylation in the presence of Cu
powder yield?!! the 5-substituted-2-pyranones (289) (Scheme 7).

(Z)-2-Alken-4-ynoates (297) are useful precursors for the syn-
thesis of 5-halo-6-alkyl-2H-pyran-2-ones (299) in high yield
(Scheme 11). The cyclisation of 2-alken-4-ynoates (297) is effected
by ICI (298).2%°

3-Substituted-2H-pyran-2-one-4-carboxaldehyde acetals (302)
have been synthesised??! from the reaction of an acetylenic di-
aldehyde monoacetal (301) and 5-substituted Meldrum’s acid

COOEt COOEt Etooc g COOE !!))I-ci:Br/AcOH oo
) Cu
286 287 288 289
Scheme 7.

4.2. By Wittig reactions

The Wittig reaction has been employed for the synthesis of 4,6-
disubstituted-2H-pyranones®'? (291) by heating a phosphorane
(290) with different 1,3-diketones (279) (Scheme 8).

(300) at reflux for 24 h in trismethoxyethoxyethylamine (TMEEA)
in good-to-high yields (Scheme 12).
3,4,6-Triaryl-2H-pyran-2-ones 306 have been synthesised from
1,3-diarylprop-2-yn-1-ols obtainable from the reaction of phenyl-
acetylenes (303) and 4-substituted benzaldehydes (304) in the
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Scheme 9.
o] OH Treatment of cyclobutenones with 5 mol % of [{RuCl,(CO)s},] in
o A -0 RCOCH2 N toluene at 100 °C for.12h. gave novel_dlmerlsatlon prodggts, 2625;
#\ | o I (53- 860/ | alkenyl-2-pyranones, in high yields with good (Z)-selectivity.
0" "R" 1y (254 nm) R! ) (SN The use of [{RhCl(CO)s};] as catalyst instead of [{RuCly(CO)s},] led
296 285 to a sharp reversal of stereoselectivity.
R = alkyl, aryl A convenient synthesis of 3-acylamino-2H-pyran-2-ones
subsfituted aryl (312) has been developed??* through a reaction of p-alkoxy-
scheme 10 vinylpolyfluoroalkyl-ketones (310) with N-acylglycines (311)
) (Scheme 15).
c R+
o &OR1 o |
1 o) X
L [ g
S R = R2 R? O (0]
AN =
R? W, [
297 298 + 299
Scheme 11.
1% CH(OMe)
R GHO O - CH(OMe), R 2
0 . G K2CO3/TMEEA o ScoH -Me,CO | X
#\o o i THF SON\CH -CO; o X0
CH(OMe), o ol 202
300 301
Scheme 12.

presence of n-butyllithium (Scheme 13). Subsequent oxidation of
the intermediates by activated manganese dioxide (MnO-) afforded
the corresponding 1,3-diarylprop-2-yn-1-ones (305) in good yield,

Enaminones (313) also react analogously with N-acylglycines
(311) to yield®?> 3-acylamino-6-substituted-2H-pyran-2-ones (314)
(Scheme 16).

CH,COOEt Rt
R R? © O R
1) BuLi, -78 °C
+ Y > R! csc—c
2) MnO, it
¢ CHO
CH 208 305 R2 306
303
Scheme 13.

which on condensation with para-substituted-phenylacetic acid
esters under basic conditions afforded the 3,4,6-triaryl-2H-pyran-
2-ones (306) in moderate yields.?%?

A novel stereoselective synthesis of 2-pyranones (308 and 309) by
the ring-opening dimerisation of cyclobutenones (307), catalysed by
ruthenium and rhodium complexe, has been developed (Scheme 14).In
addition, a rhodium complex [{RhCI(CO);}»] showed high catalytic ac-
tivity in the decarbonylative or direct coupling of cyclobutenones with
alkenes by C-Cbond cleavage. The present reactions are likely to involve
both n*-vinylketene and metallocyclopentenone intermediates.

4.4. From silyl reagents

Silylketenes (315) easily undergo a [4+2] cycloaddition reaction
with electron-rich 1,3-dienes (316) to yield 2-pyranones (318)%26
via the intermediate 317 (Scheme 17).

O-Silyl cyanohydrins on reaction with cyclobutenediones (319)
give a spontaneous silyl migration with expulsion of cyanide ion to
generate the key intermediate 4-acylcyclobutenone which un-
dergoes facile rearrangement to the substituted 2-pyrones (320)
(Scheme 18).212227
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Scheme 14. Plausible mechanism for formation of 2-pyranones.

OFEt
= ROCHN . NHCOR 3,6-Unsubstituted-4-hydroxy-2H-pyran-2-ones 321 have
+ L _ A0 /(I been prepared by the reaction of 1-trimethylsiloxy-
R0 HO” 0  120-160°C R™ "O” ~O alkenes and malonyl dichloride at below 0°C in good yields
310 311 312 (Scheme 19).228
Scheme 15.
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Scheme 18.
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4.5. From (Z)-2-en-4-ynoic acids

6-Substituted-5-aryl-2H-pyran-2-ones (324) have been pre-
pared from the reaction of (Z)-5-alkyl-2-en-4-ynoic acids (322)
with aryl halides (323) in the presence of K,CO3 and a catalytic
amount of Pd(PPhs)4, as a mixture of 2-pyranones (324) and ster-
eodefined 5-[(1,1-unsymmetrically disubstituted)methylidene]-
2(5H)-furanones®?? (325) (Scheme 20). This reaction does not give
satisfactory yields of the 2H-pyran-2-ones (324). Thus, (Z)-5-alkyl-
2-en-4-ynoic acids (322), prepared by the Pd-catalysed alky-
nylzinc-B-haloacrylic acid coupling, on treatment with 5-10 mol %
of ZnBr, produce 6-alkyl-2H-pyran-2-ones (326), along with minor
amounts of (Z)-5-alkylidenefuran-2-(5H)-ones (Scheme 20).23°

R-Z D . _Pd(PPha)s j\/l Y&
COOH "K,CO5/MeCN
322 323 324
N ZnBr, (5-10mol%) Q
4 o
R COOH THF, 23 °C RS0 0
322 326
Scheme 20.

Recently, a stereoselective synthesis of 2-pyranones (326) in the
presence of a palladium catalyst from a functional vinyltin de-
rivative has been reported in very good yields (Scheme 21).231:232
The required vinyltin precursor, has been easily obtained by radical
hydrostannation®33 of but-3-ynoic acid with BusSnH in 83% yield as
a mixture of E/Z isomers (85:15), which on reaction with acid
chlorides under standard Stille conditions, afforded the 6-

substituted-2H-pyranones (326).

C/\COOH BusSnH (2.1 eq) Z 0SnBu RCOCI | X

_— —_—

Zz AIBN, toluene SnBus Pd(PPh3)s o X0
100 °C, 3h dioxane, 50 °C 326

Scheme 21.

4.6. From cyclisation of glutaconic acid

A substituted glutaconic acid (327) on reaction with acetyl
chloride in a sealed tube at 100 °C gives a mixture of 6-hydroxy-3-
methyl-2H-pyran-2-one (328) and the corresponding 6-chloro-3-
methyl-2H-pyran-2-one (329) (Scheme 22).23*

Me.__~_ COOH sealed tube Ve
+ MeCOCl ————— |
COOH 100°C X0 Yo
327 328 X = OH
329 X = CI
Scheme 22.

Recently, pyrones 331 have been prepared by a nickel-catalysed
[2+2+2] cycloaddition of diynes 330 and carbon dioxide at atmo-
spheric pressure in the presence of the ligand, 1,3-bis-(2,6-diiso-
propylphenyl)imidazol-2-ylidene (IPr) (Scheme 23)23° The

R3
R1><iR3 5 mol% Ni(COD), R! A Y
1 atm CO,, 60 °C
2 — p3 2 2 0
R?—=-R 10 mol% IPr R
R3
330
331
Scheme 23.

mechanism involves an initial [2+2] cycloaddition of carbon di-
oxide and an alkynyl unit of the diyne, followed by insertion of
a second alkynyl moiety and reductive elimination to furnish the
pyrones in good yields.

Recently, a new methodology for the construction of the 2H-
pyran-2-one ring system has been developed, using propargyl
chloride or propargyl alcohol 332 as the substrate, which on re-
action with carbon monoxide and KCN in the presence of Ni(CN); in
a basic aqueous medium, afforded 4,6-dimethyl-5-cyano-2-pyr-
anone 333 (Scheme 24).236

Me

NC

B NaOH/H,0 A

HO=C-CHX Ni(CN),/KCN/CO |
I
332 2 Me” "O” ~O
333
X=H or CI
Scheme 24.

Tominaga et al.>” have reported an elegant synthesis of 6-alkyl/
aryl-4-methylsulfanyl-2H-pyran-2-one-3-carbonitriles (335a), and
methyl  6-aryl-4-methylsulfanyl-2H-pyran-2-one-3-carboxylates
(335b), from the reaction of various ketones with ketene
dithioacetals (334) derived from methyl cyanoacetate and di-
methyl malonate in the presence of powdered KOH in DMF/
DMSO (Scheme 25). The compounds 335a are aminated with
secondary amines in refluxing ethanol to yield the 6-aryl-4-
sec-amino-2H-pyran-2-one-3-carbonitriles (336) in moderate
yields.238'239

Tarhan et al.*#? have reported a one-pot synthesis of substituted
2H-pyran-2-ones (339) in good yields from the acid-catalysed re-
actions of 1,3-dicarbonyl compounds (337) with methyl 2-carbo-
methoxy-3-(N-methylanilino)acrylate (338) (Scheme 26).

5. Reactions of 2H-pyran-2-ones

It is evident from the topography of 2H-pyran-2-one (340)
(Fig. 60) that the C-2, C-4 and C-6 positions of the pyranone
ring are electrophilic in nature and prone to nucleophilic attack.
The electron density at C-3 and C-5 remains unaffected and
these positions are susceptible to electrophilic attack. The
presence of alkyl, alkoxy or electron- releasing substituents at
the C-4 and C-6 positions of the pyran ring facilitates electro-
philic substitution in the ring. An electron-withdrawing sub-
stituent at C-3 makes the C-4 and C-6 positions more
impoverished and thereby favours nucleophilic reactions. With
regard to these two positions, the latter is comparatively more
susceptible to nucleophiles. The presence of good leaving
groups such as methoxy, methylsulphanyl and methylsulph-
oxide groups at C-4 makes the position more vulnerable to
nucleophilic attack.

Besides electrophilic and nucleophilic reactions, the 2-pyranone
ring system shows photochemical and cycloaddition reactions, as it
behaves like a cyclic diene.

5.1. Electrophilic addition and substitution reaction

5.1.1. Halogenation

The presence of alkyl or electron-donating substituents on the
pyran ring favours electrophilic reactions. In the absence of acti-
vating groups, electrophilic reactions require forcing conditions
that lead to substitution and addition reactions.

Bromination of unsubstituted 2H-pyran-2-one (278) occurs at
60 °C in the presence of an excess of bromine and provides 3,4,5,6-
tetrahydro-tetrabromopyran-2-ones (341), but in boiling carbon
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tetrachloride at 77 °C yields 3-bromo-2H-pyran-2-one (342) as
a substitution product.?* Irradiation of 278 in 1,2-dichloroethane
with Br; gives 5,6-dibromo-5,6-dihydro-2H-pyran-2-one (343) as
an addition product (Scheme 27).241

Br
excess 77 °C
Br O (0] 60 °C 0" "0 [0 0]
341 78 342

Scheme 27.

Sulphur tetrafluoride in hydrofluoric acid fluorinates 5-formyl-
2H-pyran-2-one (344) at the ring atom as well as at the substituent
at 100°C to yield 5-difluoromethyl-2-pyranone (345) and 5-
difluoromethyl-3-fluoro-2-pyranone (346) (Scheme 28).24

OHC F,HC FoHC F
o~ "0

(O] (O]
344 345 346
Scheme 28.

5.1.2. Nitration

Nitration of unsubstituted 2H-pyran-2-one (278) with nitro-
nium tetrafluoroborate yields 5-nitro-2-pyranone (347) in moder-
ate yield (Scheme 29). In the presence of a phenyl ring at the C-6

position of the pyran ring (348), however, the aryl ring is nitrated
preferentially with a mixture of nitric acid and sulphuric acid to
yield 349. Nitation of 348 with 67% nitric acid gives 3-nitro-2H-

)17
X O=N X
| —
O~ "ONO, o~ "0
e

pyran-2-one (350).

Q NO5BF;.MeNO,
—_—

o Yo
278 347
NO
/EI 2 67% HNO; /(l 94% HNOg_ B
o 00 42°C Ta2c 00
350 OuN 349

Scheme 29.

5.1.3. Chloromethylation

Chloromethylation of 2-pyranone (278) with formalin and
hydrochloric acid yields 3-chloromethyl-2H-pyran-2-one (351)
(Scheme 30).243 The presence of alkyl substituents such as a methyl
group at positions 5 and 6 of the pyran ring (278a) facilitates the
chloromethylation reaction and forms 3-chloromethyl-5,6-di-
methyl-2H-pyran-2-one (351a) (Scheme 30).244

1 1
—_—
o HCI R2Z 0" S0

R2" S0
278 R'= R2=H 351 R'=R2=H
278aR'=R?= Me 351aR'=R%2=Me

Scheme 30.

5.14. Miscellaneous reactions

Alkylation of unsubstituted 2-pyranone (278) by a haloalkyl
methyl ether in the presence of Zn/HCl yields the 3-alkyl- (352a)
and 3,5-dialkyl-2-pyranone (352b) (Scheme 31).242

CICH,OMe _ (IMG Me\@'\"e
" zamcl o X0
352a 352b
Scheme 31.

The alkylation chemistry of 4-hydroxy-2H-pyran-2-ones has been
extensively explored by Moreno-Manas et al.?4>246 Some interesting
enolate-type reactions are highlighted in this section. Alkylation of 4-
hydroxy-2H-pyran-2-ones under the usual reaction conditions leads
to the O-alkylated products. Thus, in order to obtain C3-alkylated
products, more specific reaction conditions are generally required.
Moreno-Manas et al.>4>?%6 demonstrated the stereoselective and
regioselective synthesis of 3-alkyl-4-hydroxy-2H-pyran-2-ones
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(353) through a palladium-catalysed allylation of 4-hydroxy-6-
methyl-2H-pyran-2-one (271) with allylic acetates in a thermo-
dynamically controlled manner. Another useful approach?*® for
C3-alkylation of 271 is through thioalkylation (354) followed by
desulphuration to afford the alkylated lactone 355 as shown in
Scheme 32. In the absence of benzenethiols, various aromatic
and aliphatic aldehydes also react with 4-hydroxy-2H-pyran-2-
ones to furnish the bis-lactones 356 in good yields?4>246
(Scheme 32).

OH

/fi +  MeCOOCHR'-CH=CR?R?
0 Yo
271

+PhSH

\CH?
R OH
P ﬂ
o~ O
354

RCHO\

electron-withdrawing substituents favour nucleophilic sub-
stitution, ring-opening, ring-transformation and ring-contraction
reactions, depending upon the type of nucleophile used.

5.2.1. Reactions due to C-nucleophiles

Carbanions are strong nucleophiles and are generated easily in
situ from various organometallic reagents. The formation of the
products depends upon the substituents present and the molar the
ratio of the reactants. The reaction of 4,6-dimethyl-2H-pyran-2-one

OH R' R?
Pd(acac), AN = R3
“eere
PPh3

[OXN¢]

353

OH

ffjfl
O "00” O

Scheme 32.

Recently, Sagar et al.*¥” have developed a diastereoselec-
tive synthesis of some pyrano-pyrones 357a,b by an L-proline-
catalysed condensation of 271 with substituted enals
(Scheme 33).

OH

X R1‘R2
4 _oroli
| . R\‘)\/ACHO L-proline
0o

RB
271

(358) with two moles of phenylmagnesium bromide yields®4® 2,2-
diphenyl-4,6-dimethylpyran (359), whereas the use of an excess of
the Grignard reagent changes the course of the reaction and, finally,
1,3-terphenyl (360) is formed (Scheme 34). The transformation of

Scheme 33.

5.2. Nucleophilic reactions

Nucleophilic reactions on 2H-pyran-2-ones are greatly influ-
enced by the substituents present. Good leaving groups and

2H-pyran-2-one to an arene is also effected by the use of a Refor-
matsky reagent, e.g., BrZnCH,COOE-t.

The carbanion of diazomethane easily methylates
carbon atom adjacent to an electron-withdrawing substituent of

249,250 the

PhMgBr PhMgBr
OMgBr
358

l

Me

PhM
[QOM Br OMIBT BngOﬂ

HQ HQ
OMgBr

Scheme 34.
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2-pyranone. Thus, the reaction of methyl 2H-pyran-2-one-5-car-
boxylate (361) with diazomethane forms methyl 6-methyl-2H-py-
ran-2-one-5-carboxylate (362) and methyl 4,6-dimethyl-2H-
pyran-2-one-5-carboxylate (363) (Scheme 35).

Me~ 0" "O
362

Meoocm CH,N,/MeOH
B ——

(iii) 6-alkyl/aryl-4-sec-amino-2H-pyran-2-one-3-carbonitriles, (iv)
5-alkyl-6-aryl-4-methylsulphanyl-2H-pyran-2-one-3-carbonitriles/
carboxylates, (v) 5-aryl-6-alkyl-4-methylsulphanyl-2H-pyran-2-
one-3-carbonitriles/carboxylates, (vi) 5,6-diaryl-4-methylsulphanyl-

Me
Meoocfi
o) Me” 0o
363

Scheme 35.

Cyanide ion, being a nucleophile, reacts with methyl 4,6-di-
methyl-5-carboxylate (363) and gives 5-cyanohexa-2,4-dienoic
acid (364) (Scheme 36).2°! The reaction possibly proceeds through
a cyclic intermediate, followed by ring opening.

2H-pyran-2-one-3-carbonitriles, and (vii) methyl 5,6-diaryl-4-
methylsulphanyl-2H-pyran-2-one-3-carboxylates as precursors. As
evident from the topography of these 2-pyranones, positions C-6
and C-4 are prone to nucleophilic attack, possibly due to extended
conjugation and the presence of an electron-withdrawing sub-

Me % stituent at position 3 of the pyranone ring. Carbonyl compounds
COOMe - Me HO having an o-methyl or methylene group adjacent to the carbonyl
Z | CN MeOOC 72 >~ MeOOC | group in a cyclic or acyclic system or reactants with a reactive
07 0" Me DMF Me oo | Me methylene group have been used as a source of the carbanion for
363 NC Me” “CN the ring-transformation study. Thus, the base-catalysed ring
364 transformation of suitably functionalised 2H-pyran-2-one by
scheme 36 different carbanions produced various arenes and heteroarenes,
) which are difficult to obtain through classical routes (Scheme 37).
Me
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368 366
365a) X = COOMe, Y = SMe, R'=H
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Scheme 37.

5.2.1.1. C-Nucleophile-induced ring transformations. The ring trans-
formation of 2-pyranones is greatly influenced by the type and
position of the substituents attached to the ring. Electron-with-
drawing and good leaving groups favour ring-transformation re-
actions by the carbanion.

Ram and Goel et al. have recently made an extensive study of the
ring transformations of 2-pyranones 365 by carbanions using (i) 6-
alkyl/aryl-4-methylsulphanyl-2H-pyran-2-one-3-carbonitriles, (ii)
alkyl 6-alkyl/aryl-4-methylsulphanyl-2H-pyran-2-one-3-carboxylates,

A base-catalysed ring transformation of 365a by aryl methyl
ketones in DMF, provided 1,3-teraryls?®22>3 (366) as a major
product and methyl (4,6-diarylpyran-2-ylidene)acetates (367) as
aminor constituent. A change of the ester group to CN (365b) in the
lactones changed the course of reaction and provided exclusively
the (4,6-diarylpyran-2-ylidene)acetonitriles®®* (368). This dis-
crepancy is possibly due to the high electron-attracting power of
the CN substituent, compared to COOMe, that facilitates the eno-
lisation and favours the ring-closure reaction to yield 368.
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Biaryls?>® 369 have also been obtained regioselectively from the
reaction of 2-pyranones (365b) with aliphatic ketones under sim-
ilar reaction conditions in good yields, which is in contrast to the
reaction with aryl methyl ketones.

Highly congested biaryls (370) have also been prepared®>52>’
from the reaction of 2-pyranones (365b) and malononitrile under
analogous reaction conditions. This procedure is an alternative to
the Suzuki reaction for preparing biaryls in which one of the aryl
rings is highly functionalised.

The reaction of 2-pyranones (365b) with aryl acetones under
analogous reaction conditions provided 1,2-teraryls (371) in 11-
21% yield, 2829 together with pyrano[3,4-c]pyran-3,4-diones (372)
as major constituents. The teraryls 371 were, however, regiose-
lectively prepared from the ring transformation of 6-aryl-4-sec-
amino-2H-pyran-2-one-3-carbonitriles (365c¢) with aryl acetones.
In spite of these being two sites for the carbanion formation under
the applied experimental reaction conditions, CH; is the preferred
site, compared to methyl, due to the combined inductive and res-
onance effects of the substituents attached to it.

By means of a careful manoeuvering in the selection of the ap-
propriate 2-pyranone and reactant, a variety of compounds can be
derived in the shortest possible steps through ring-transformation
reactions. Arylacetates (373), known for their diverse pharmaco-
logical activities, are easily prepared from the reaction of 365 and
ethyl levulinate in excellent yields (Scheme 38).260

Y Y
SN2 X
| + MeCOCH;CH,COOEt -~
Ar o~ "0 Ar Me
365 CH,COOEt
373
Y = SMe, piperidin-1-yl
X =CN, COOMe

Scheme 38.

The ring transformation of 365b by methyl vinyl ketone (374)
was also studied during our exploratory work. This reaction was
very interesting as the first step was a substitution on C-4 of the 2-
pyranone to form 375 with loss of methylthiol, which in turn acted
as a nucleophile and formed a 4-methylsulphanyl-2-butanone
(376) intermediate in situ as a Michael adduct on reaction with
methyl vinyl ketone. This intermediate further acted as a source of
carbanion for the ring transformation. Thus, the reaction of 365b
and 4-methylsulphanyl-2-butanone (376) in DMF using KOH as
a base produced 3-methylsulfanylmethyl-2-methyl-6-methyl-
sulphanyl-4-arylbenzonitriles (377) in moderate yield (Scheme
39).261 This reaction was further generalised through ring trans-
formation of 365b by 4-arylsulphanyl-2-butanones obtained from
the reaction of 374 and thiophenols.

7
SMe [e)
~CN o DMF/KOH X ON
| « N — | + MeSH
A0 N0 274 A0S0
365b 375 SMe
0 o)
DMF/KOH 365b CN
Mesh + Mo —— sMe
Ar Me
374 376 CH,SMe
377
Scheme 39.

Recently, para-terphenyls such as 379 have been prepared
by the reaction of 5-aryl-6-methyl-4-methylsulfanyl-2-oxo-2H-
pyran-3-carbonitriles, e.g., 365d, with 2-methoxy-1-phenyl-
ethanone (378) in the presence of a base at room temperature
(Scheme 40).252

SMe SMe
Ph._A-CN o Ph CN
| . MeO O
Me” Yo X0 DMFKOH e O

M
365d 378 OMe
379

Scheme 40.

Goel et al. have prepared ortho-cymene- (380) and meta-cym-
ene- (381) cored biaryls through a ring transformation of 365¢ with
isopropyl methyl ketone as a source of carbanion (Scheme 41).253

®
Me
O o Ph CN

N
/KICN_ 380
Arm 0770 Ar = i-Pr /
s65 PhCH,COR' Ph N\D
R” N
381,R = Me
Scheme 41.

Compounds containing an activated methylene group, such as
2-pyridylacetonitrile, act as a source of carbanion and have been
used for a ring-transformation study. The reaction of 2-pyranone
with 2-pyridylacetonitrile in the presence of KOH in DMF led to two
products 382 and 383, depending upon the attack of the carbanion
either at the C-4 or C-6 site. Attack at C-6 by the carbanion from 2-
pyridylacetonitrile was followed by ring closure involving the ring
nitrogen to yield quinolizines*®* (382), while attack at C-4 led to the
production of pyranoquinolizines (383) involving the CN sub-
stituent at C-3 of the pyran ring in cyclisation (Scheme 42).

The versatility of the reaction was further explored using (5-
aryl-1H-pyrazol-3-yl)acetonitriles 384, (benzimidazol-2-yl)aceto-
nitrile 385 and (benzothiazol-2-yl)acetonitrile 386 as the sources of
carbanion. These reagents on reaction with 365b separately pro-
duced a mixture of two products. Thus, reaction of 365b with
3-cyanomethyl-5-aryl-1H-pyrazoles (384) provided pyrazolo[1,5-
a]pyridines (387) and pyrano[4,3-d]pyrazolo[1,5-a]pyridines (388)
as minor constituents.?®® Similarly, the reaction with (benzimid-
azol-2-yl)acetonitrile (385) under similar reaction conditions yiel-
ded pyrido[1,2-a]benzimidazoles (389) and pyrano[4,3-
d]pyrido[1,2-a]benzimidazoles (390) as minor products,?®®> while
(benzthiazol-2-yl)acetonitrile (386) under analogous conditions
provided only 3-aryl-1-[(E)-cyanomethylidene]-1H-pyrido[2,1-
b]benzthiazole-4-carbonitriles (391), due to the non-availability of
the other site for the ring closure.2%%

Recently, Goel et al. have systematically synthesised 1,2-diaryl-
(392), 1,2,3-triaryl- (393), 1,2,4-triaryl- (394) and 1,2,3,4-tetraar-
ylbenzenes (395)?%7 through base-catalysed ring transformation
of 5,6-diaryl-4-methylsulphanyl-2H-pyran-2-one-3-carbonitriles
(365), obtained from the reaction of deoxybenzoins and methyl 2-
cyano-3,3-dimethylthioacrylate (Scheme 43). A single crystal X-ray
diffraction study of 395 (R'=R?>=H, X=CN) revealed that all of the
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phenyl rings are arranged in a propeller like-conformation. A
crystal packing analysis showed an N- noncovalent interaction?®’
in the molecule. These compounds (393-395) show inherent
atropisomerism and one of the compounds of the prototype 393
has been resolved?®’? in to the atropo-enatiomerically pure qua-
teraryls (393a and 393b) and its absolute configuration was de-
termined by LC-CD coupling in combination with quantum
chemical CD calculations (Scheme 43).

The synthesis of hydroxylated dipyridinyls 397 and terpyridinyls
with phenyl spacers (398 and 399) has been reported through
carbanion-induced, ring-transformation reactions of 6-pyridyl-4-
methylsulphanyl-2H-pyran-2-one-3-carboxylates (365a) by either
2,6-diacetylpyridine (396a) or 1,3-diacetylbenzene (396b) in good
yields (Scheme 44).268

Attempts to make bent-core oligoarenes stepwise through ring
transformation of a 6-aryl-4-(pyrrolidin-1-yl)pyran-2-one-3-car-
bonitrile (400) by 1,4-diacetylbenzene and 2,6-diacetylpyridine
(396a) in DMF/KOH was successfully achieved (Scheme 45).25° This
methodology is applicable for the preparation of polyarenes rang-
ing from tetraarenes 401, heptaarenes 402 to undecaarenes 404
through intermediacy of 403 by manipulating the aryl substituent
in the pyran ring and selecting the appropriate diacetylarenes.

5.2.1.2. Synthesis of fused cyclic arenes and heteroarenes.

5.2.1.2.1. Arenes. Polycyclic arenes and heteroarenes have been
prepared through base-catalysed ring transformation of a suitably
functionalised 2H-pyran-2-one by alicyclic ketones and hetero-
ketones. Alicyclic ketones ranging from cyclobutanone to
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pentadecanone have been used as a source of carbanion for the ring
transformation. Benzocyclobutanes are difficult to make using the
four-membered cyclic ketone, due to ring strain, but Ram et al.>”°
have successfully synthesised (405a) through base-catalysed ring
transformation of 2H-pyran-2-ones (365a,b) by cyclobutanone
separately in moderate yield in one step (Scheme 46). Analogously,
1H-2,3-dihydroindans®’!(405b), tetrahydronaphthalenes®’? (405c)
and dihydronaphthalenes®’®> have been prepared through ring
transformation by cyclopentanone, cyclohexanone and 2-cyclo-
hexenone, respectively. Even macrocyclic compounds such as

MeOC” ~X” “COMe

KOH, DMF
—_—

benzocycloalkenes®’>?7* (405d) have been easily prepared from
the reaction of 365a,b with the appropriate macrocycloalkanones.

Highly congested angular hydrocarbons such as 1-aryl-3-hy-
droxy-4-methoxycarbonyl-9,10-dihydrophenanthrenes (406) as
major products and 4-aryl-(5,6-dihydronaphtho[1,2-b]pyran-2-
ylidene)acetates (407) as minor constituents have also been pre-
pared and reported?”” through base-catalysed ring transformation
of 365a by 1-tetralone under similar reaction conditions.?’62”7 This
is a very efficient and novel approach to the synthesis of bis-
phenanthrenes 406 with positional isomers.
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5.2.1.2.2. Heteroarenes. The feasibility of the methodology for the
construction of various heterocycles as drug intermediates has been o]
further explored using heterocyclic ketones as a source of carbanion. %
The reaction of 365a with tetrahydrothiopyran-4-one (408) at A g COOMe
room temperature in the presence of powdered KOH in DMF SMe l

smoothly provided the ring-transformed products, 6-carbethoxy-
5-methylsulphanyl-3,4-dihydro-1H-isothiochromenes (409),>’% in
moderate yield (Scheme 47). Analogous, the ring transformation of
365a with tetrahydrothiophene-3-one (410) in the presence of
1 equiv of KOH provided the methyl 7-aryl-2,3-dihydro-5-methyl-
sulphanylbenzothiophene-4-carboxylates (411). The use of 2 equiv
of KOH, however, led to the corresponding acids (412), due to ester
hydrolysis.?’8

COOMe

IS KOH (1eq.)

MeS DMF
+ 365a + KOH
410

o OMe

rou A )
‘ N a O d OMe
DMF
o] Ar

420 418
Scheme 49.

COOMe
S

4os|

411

COOH

MeS

Ar
412

JDMF/KOH(Z eq.)

409

Scheme 47.

This reaction was further generalized as shown in Scheme
48, using thiochroman-4-one (413) and chroman-4-one (415)
as the source of carbanion for the ring transformation of
365a.

The interaction of methyl 5,6-diaryl-4-methylsulphanyl-2H-pyran-
2-one-3-carboxylates (365e) with 6,7-dihydro-5H-benzo[b]thiophen-
4-one (421) in the presence of a base in DMF furnished the function-
alised naphthothiophenes®81(422) in good yields (Scheme 50).

413

COOMe COOMe
+ 365a +
f‘j@ f‘t© KOH Ar
416 414

Scheme 48.

The usual work-up and purification by column chromatography
provided?’® methyl 7-aryl-9-methylsulphanyl-6H-benzo[c]thio-
chromene-10-carboxylates (414) and methyl 7-aryl-9-hydroxy-6H-
benzo[c]chromene-10-carboxylates (416).

Highly functionalised dibenzofurans®’® (418) and 4,5-dihydro-
naphtho[2,1-b]furans?8® (420) have been synthesised and reported
from the reaction of 365a with 7-methoxybenzofuran-3-one (417)
and 6,7-dihydro-5H-benzo[b]furan-4-one (419), respectively, in
good yields (Scheme 49).

422

Scheme 50.
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N-substituted
4282

Nitrogen heterocycles such as tetrahy-
droisoquinolines (424) have been synthesise very elegantly
through the carbanion-induced ring transformation of methyl 6-
aryl-4-methylsulphanyl-2H-pyran-2-one-3-carboxylates (365a) by
N-substituted-4-piperidones (423) in good yields (Scheme 51).

SMe 0 COOMe
N COOMe DMF MeS
| ¥ KOH N
Ar” 070 N R
R Ar
365a 423 424
Ar = Ph, substituted Ph, Naphth
R = COOEt, Et, PhCH,
Scheme 51.

5.2.1.3. Synthesis of aryl aldehydes and aryl ketones. Suitably func-
tionalised 2H-pyran-2-ones (365b) are very good substrates for the
construction of highly congested arylaldehydes (426) and B-tetra-
lones (429) through ring- transformation reactions in two steps
(Scheme 52).
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d]pyrazolo[1,5-a]pyridine (433) in poor yields. The reaction of 430a with
ammonium acetate in ethanol at reflux temperature and the usual work-
up led to the formation of 2-amino-6-ferrocenyl-4-methylsulphanylpyr-
idine (434). The diferrocenyl arene 435 has been obtained through ring
transformation of 430b by 1-acetylferrocene in 15-20% yield.?3>%6 The
ring transformation of 430a by alkyl and aryl methyl ketones under
analogous reaction conditions yielded the monoferrocenylarenes (436a—
d) in moderate yields.

5.2.2. Nitrogen nucleophile-induced reactions
6-Aryl-4-methylsulphanyl-2H-pyran-2-one-3-carbonitriles/carb-
oxylates (365a,b) are indispensable synthons for the construction
of nitrogen heterocycles through ring transformation by nitrogen
nucleophiles. Thus, the reaction of 365b with ambiphilic nitrogen
nucleophiles such as hydrazine hydrate and arylhydrazines, sepa-
rately provided (5-aryl-1H-pyrazol-3-yl)acetonitriles?®” (438a-e),
an isomeric mixture of (5-aryl-1-phenylpyrazol-3-yl)acetonitriles
(437a), and (3-aryl-1-phenylpyrazol-5-yl)acetonitriles (437b), to-
gether with a bicyclic product formed through a ring closure in-
volving the cyano function and methylsulphanyl group as
pyrano[4,3-c|pyrazoles 437c (Scheme 54).288

o)
SMe SMe SMe
CN CN M CN
DMF A vie powdered KOH
A o ot | + €0 DMF
r KOH A0S0 CH(OMe), Ar CH(OMe),
% 425
<o 365b
% | 427 | | | Amberlyst -15
or formic acid (98%)
428
80% HCOOH
SMe
Ar CN
o
" Ar CHO
es 426
CN
429
Scheme 52.

Thus, the reaction of 6-aryl-4-methylsulphanyl-2H-pyran-2-
one-3-carbonitriles (365b) with pyruvaldehyde dimethyl acetals
under similar experimental conditions provided highly substituted
acetals 425, which on stirring with Amberlyst-15 in chloroform at
room temperature, deacetalated to the free aldehydes (426).%%3 The
analogous reaction of 2-pyranones (365b) with (2,2-dimethyltri-
methylene) ketal (427) provided the tetrahydronaphthone ketals
(428), which on stirring with 80% HCOOH, deketalated to the highly
functionalised 2-tetralones (429).284

5.2.14. Synthesis of metallocenes. 6-Ferrocenyl-4-methylsulphanyl-
2H-pyran-2-one-3-carbonitrile (430a) and methyl 6-ferrocenyl-4-
methylsulphanyl-2H-pyran-2-one-3-carboxylate (430b) are ob-
tained from the reaction of acetylferrocene with methyl 2-cyano/
carbomethoxy-3,3-dimethylthioacrylate. The ring-transformation
of 6-ferrocenyl-2H-pyran-2-ones (430a,b) by carbon and nitrogen
nucleophiles separately led to the production of various ferrocenyl-
arenes and heteroarenes.

Thus, the reaction of 430a with hydrazine in methanol at reflux
temperature  provided 3-cyanomethyl-5-ferrocenyl-1H-pyrazole
(431) in more than 40% yield (Scheme 53). The cyanomethyl-1H-pyr-
azole (431) was used further as a source of carbanion for the ring
transformation of 430a in a basic medium to produce the ferroce-
nylpyrazol[1,5-a]pyridine (432) and ferrocenyl-3-imino-2-oxopyrano|[4,3-

Using hydroxylamine as an ambiphilic nucleophile, its reaction
with 365b provided (3-arylisoxazol-5-yl)acetonitriles (439a-e) and
pyrano[4,3-clisoxazoles (440). The course of the reaction was
ascertained by trapping and characterising the isolated intermediate.

Various amino acid esters were used as nitrogen nucleophiles
successfully for the preparation of N-substituted pyridine derivatives.
The reaction of 365b with amino acid esters in refluxing pyridine
produced 2-imino-N-substituted pyridines (441) in 40-52% yield. In
cases where optically active amino acid esters were used as the
nucleophile, the products isolated were optically inactive, due to
racemisation in the presence of concentrated alkali. 2-Amino-4-
methylsulphanylpyridines (442) have been synthesised?® by heat-
ing a mixture of 365b with ammonium acetate/carbonate in pyridine
(Scheme 55). Hydrogenation of 442 in the presence of Raney Ni
produced 2-aminopyridines (443) with elimination of the methyl-
sulphanyl group. Bridgehead bicyclic (2-arylpyrido[1,2-a]pyrimidin-
2-ylidene)acetonitriles (444) were obtained from the reaction of
365b with 2-aminopyridine at 120 °C for 4 h. A base-catalyzed ring
transformation of 365b by cyanamide produced 2-amino-4-methyl-
sulphanylnicotinonitriles?®® (445). 2-Aminothiazoles and 2-amino-
1,3,4-thiadiazoles on fusion with 365b separately underwent thermal
ring transformation to yield (7-arylthiazolo[3,2-a]pyrimidin-5-yli-
dene)acetonitriles®®! (446a) and (7-arylthiadiazol[3,2-a]pyrimidin-
2-ylidene)acetonitriles®’! (446b) in very good yields (Scheme 55).
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In order to prepare fused nitrogen heterocycles, the ring trans-
formation of 365b was carried out by 6-amino-1,3-dimethylpyr-
imidine-2,4-dione (447) in the presence of powdered KOH in DMF,
yielding the 7-aryl-5-cyanomethyl-1,3-dimethyl-2,4-dioxopyr-
ido[2,3-d]|pyrimidines (448) in 65-78% yield (Scheme 56).2%2

Reaction of 2-pyranone (365b) with a secondary amine pro-
vided C-4 substitution products, while interaction with a primary
amine afforded nitrogen heterocycles and/or substitution products.

The reaction of 365b with ethanolamine in ethanol at reflux
temperature provided the nitrogen-inserted products, 6-aryl-1-
(2-hydroxyethyl)-4-methylsulphanyl-2-pyridones (449), and the
substitution products 6-aryl-4-(2-hydroxyethylamino)-2H-pyran-2-
ones (450), but under similar experimental conditions 365c¢ reacted
differently with ethanolamine and produced?® the 2-amino-6-aryl-
4-(piperidin-1-yl)pyridines (451)in 80-95% yield (Scheme 56). Fusion

of 365b with urea/thiourea at 150 °C yields?>®* a mixture of two ring-
transformed products, 2-amino-6-aryl-4-methylsulphanylpyridines
(452) and 6-aryl-3-cyano-4-methylsulphanyl-1H-pyridin-2-ones
(453), in an almost equal ratio, but the reaction in pyridine at reflux
temperature produced 2-aminopyridines (452) in 82-92% yield.?%

Methyl 6-aryl-4-methylsulphanyl-2H-pyran-2-one-2-carboxylates
(365a) on fusion with urea for 10-15 min provided only 6-aryl-4-
methylsulphanyl-1H-pyridin-2-ones (454)*°> without the forma-
tion of any anticipated products (455) (Scheme 57).

The formation of 454 possibly proceeds through an intermediate
455. The reactions of 2-pyranone with guanidines and amidines
have not been studied in detail. Only a single example is known,
where 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one (456) on re-
action with guanidine (457) provided (2-hydroxy-4-methylpyr-
imidin-6-yl)acetone®?52%7 (458) (Scheme 58). This reaction possibly
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proceeded through a base-catalysed ring opening by nucleophilic
attack at C-6 of the pyran ring, followed by ring closure and
decarboxylation.

The reaction of (365c) with guanidine hydrochloride in the
presence of powdered KOH in DMF, however, provided 1,9,9b-tri-
azaphenalenes (459) in moderate yield through the intermediacy of
pyrimidinylacetonitrile, which acted as a source of carbanion for
successive ring transformations (Scheme 58).2%8

Ram et al. have prepared pyridines?%® using 2-pyranones (365a—
d) as precursors and amidines as nucleophiles. The reaction of
365a-d with formamidine acetate in the presence of powdered
KOH in DMF provided excellent yields of the 6-aryl-3,4-di-
substituted pyridines (460a-d) (Scheme 59).

R X
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l N
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b) Y = SMe, X = CN

c)Y:—ND,X:CN

d)Y =SMe, X=CN,R" = Ar

o
CONRz  RyNH/A Xy  BuNH, A
Ph 28 ] Py |
R=Ph =Me
Ph R® 0" O R '}l 0]
Bu
464 463 465

Scheme 61.

5.2.2.1. Oxoketene cyclic aminals as nitrogen nucleophiles. Oxoketene
cyclic aminals have been used as nucleophiles for various ring-
transformation reactions to obtain polycyclic heterocycles, not easily
obtainable by a classical route in short steps. Oxoketene cyclic
aminals (466) have been obtained from the reaction of 3,3-bis(me-

R! X
DMF A
—o »
KOH AN R
460

a)Y = SMe, X = COOMe; R=R'=H
b)Y =SMe, X=CN;R=R"'=H
c)Y=—N:> s X=CN; R,R"=H
d)Y =SMe, X=CN,R=H, R'= Ar

e)Y = sec-amine, X =CN, R=Me, R" =H
f) Y = sec-amine, X =CN, R=NHy, R'=H

Ar = Ph, subst Ph, Naphth

Scheme 59.

This reaction was further explored by using acetamidine as
a nucleophile for the preparation of substituted a-picolines. The
reaction proceeded analogously, but the yields of 460e were poor.
The ring transformation of 365b,c by (pyrazol-1-yl)amidine or S-
methylisothiourea under similar reaction conditions produced 2-
amino-6-aryl-4-sec-aminopyridines (460f). It was surprising that
the reaction of 365c¢ with arylamidines went differently and, in-
stead of pyridines, (2,6-diarylpyrimidin-4-yl)acetonitriles (461)
were isolated and characterised.??° The reaction of arylamidines
with methyl 6-aryl-4-methylsulphanyl-2H-pyran-2-one-3-carb-
oxylates (365a), however, produced 6-aryl-3-carboxylic-4-
methylsulphanyl-1H-2-pyridones®®! (462) (Scheme 60). The
unexpected acid isolated (462; Ar=Ph) was characterised by a sin-
gle-crystal X-ray diffraction analysis. The substituents attached to
the amidine carbon also influence the course of reaction.

NC
NH
365¢ + A1)LNH - - J“,\\
:
2 AN A
461
SMe
)NLH \\COOH
365a + N
A7 NH, |
AN o
H
462

Ar, Ar' =Ph, subs Ph, Heteroaryl

Scheme 60.

6-Alkyl/aryl-2H-pyran-2-ones 463 react with amines or am-
monia, through attack at C-2 with ring opening followed by acid-
catalysed cyclisation, to yield arene (464) or pyridone (465) de-
rivatives (Scheme 61).302-30

thylsulfanyl)-1-arylpropenones with 1,2- or 1,3-diaminoalkanes. The
cyclic aminals (466) thus obtained react with 6-aryl-4-methyl-
sulphanyl-2H-pyran-2-one-3-carbonitriles (365b) in THF using NaH
as a base at room temperature in the presence of normal light to
yield 4-aryl-11-oxo0-1,2,3,11-tetrahydro-1,3a-diazacyclopenta[a]an-
thracene-6-carbonitriles°® (468) (Scheme 62). In order to trap the
intermediate (467), the reaction was carried out in the dark and,
finally, the compounds isolated were characterised as 2-(5-aryl-8-
aroyl/heteroaroyl-2,3-dihydroimidazo|[1,2-a]pyridin-7(1H)-ylidene)-
acetonitriles (467). The intermediate (467) on photolysis is
transformed into the cyclic products®®® (468) and was found to be
identical to the product obtained directly from the reaction of 365b
with 466 in the light. The aza analogs 468b have also been syn-
thesised from the reaction of 365b and the cyclic aminals obtained
from the reaction of 3,3-bis(methylsulphanyl)-1-(pyridin-3-yl)pro-
penone and 1,2- or 1,3-diaminoalkane analogously.

The reaction was further generalised by the ring transformation
of 365b by cyclic ketene aminal (469) obtained from the reaction
of 3,3-bis(methylsulphanyl)-1-(2-thienyl)propenone with ethyl-
enediamine under similar reaction conditions. The product thus
isolated were characterised as 4-aryl-11-o0x0-1,2,3,10-tetrahydro-9-
thia-1,3a-diaza-cyclopenta[a,g|naphthalene-6-carbonitriles (471)
with intermediacy of 470 in moderate yield (Scheme 62).3%7 The
stepwise reactions were, yield-wise, better compared to the one-
pot reaction. Further, in the reaction of 2H-pyran-2-one (365b)
with highly activated (imidazolidin-2-ylidene)nitromethane
(472), ring transformation proceeded smoothly under the applied
experimental conditions to yield a mixture of two compounds,3°8
due to competitive nucleophilic attack at the C-4 and C-6
positions. The reaction of 472 at C-6 of the pyran ring provided the
ring-transformed products 2-(5-aryl-8-nitro-2,3-dihydroimidazo[1,2-
a]pyridin-7(1H)-ylidene)acetonitrile (473), while attack at the
C-4 provided the substitution products, 6-aryl-4-{2-[(E)-nitro-
methylidene]-1-imidazolidinyl}-2-oxo-2H-pyran-3-carbonitriles°8
(474).
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5.2.3. S-Nucleophile-induced ring-transformation reactions
2-Thioimidazolidine (475) has been used as a sulphur nucleo-
phile for the ring-transformation reactions of 2H-pyranones 365b.
The reaction is basically initiated with ring opening by mercaptide
ion, followed by ring closure with the elimination of carbon
dioxide and methyl mercaptan to yield 2-[7-aryl-2,3-dihy-

Finally, the structures of both the isolated products (477, 478;
Ar=Ph, Y=piperidin-1-yl) were confirmed by single-crystal X-ray
diffraction (Scheme 64).

Under identical reaction conditions, 2,3,5-trisubstituted cyclo-
pentadienones®'? (479) have been prepared through carbanion-in-
duced ring contraction of 365c by methyl cyanoacetate/

dro-5H-imidazo[2,1-b][1,3-thiazin-5-ylidene]acetonitriles 476" cyanoacetamide. A plausible mechanism for the reaction is also
(Scheme 63). shown in Scheme 65. This reaction provides an elegant route for the
0
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Scheme 63.

5.2.4. Ring-contraction reactions

Suitably functionalised 2H-pyran-2-ones (365c) underwent
ring-contraction reactions by carbanions under analogous experi-
mental reaction conditions. Carbanion-induced ring contraction
was observed from the reaction of 6-aryl-4-(piperidin-1-yl)-2H-
pyran-2-one-3-carbonitriles (365c) with nitromethane using
powdered KOH as a base in DMF by stirring the reaction mixture at
room temperature. In this reaction two isomeric products**® have
been isolated and characterised as 2-oxo-5-(1-arylvinyl)-4-
substituted-2,5-dihydrofuran-3-carbonitriles (477) as the major
products and 2-oxo-5-(1-arylethylidene)-4-sec-amin-1-yl-2,5-
dihydrofuran-3-carbonitriles (478) as the minor constituents.

synthesis of highly congested cyclopentadienones, which are valu-
able drug intermediates.

The ring contraction of suitably functionalised 2H-pyranones
has also been observed in the presence of alkali. When 3-chloro-
4,5,6-triphenyl-2H-pyran-2-one (480) was heated with alcoholic
KOH, the pyranone ring was contracted to 3,4,5-triphenylfuran-2-
carboxylic acid (481) (Scheme 66).

The yield of the product was further improved by using
aqueous sodium carbonate as a base. 3-Bromo-5-carbomethoxy-
2H-pyran-2-one (482) in the presence of aqueous KOH at
60 °C yielded 3-carbomethoxyfuran-2-carboxylic acid®!! (483)
(Scheme 67).
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3-Amino-4,5,6-triphenyl-2H-pyran-2-one (484) under analo-
gous reaction conditions provided the highly substituted pyrrole-2-
carboxylic acid (485) after ring contraction (Scheme 68).312313
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o \H Ph . P ph
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H N
Ph” ~O” ~O Ph OI-!\I 2 N
484 485
Scheme 68.

5.2.5. Ring-opening reactions

The base-catalysed ring-opening reactions of 2-pyranones (365a,b)
by carbanions has been observed. Stereoselective alkenylation of
1,3-disubstituted-pyrazol-5-ones (e.g., 486) with 6-aryl-4-methyl-
sulphanyl-2H-pyran-2-one-3-carbonitriles/carboxylates (365a,b) in
DMF using powdered KOH as a base yielded the (E,E)-5-aryl-5-[ 1-aryl-
3-methyl-5-0x0-1,5-dihydropyrazol-4-ylidene]-3-methylsulphanyl-
pent-3-en-carbonitriles/methyl carboxylates®' (487) (Scheme 69).
The stereochemistry of isolated compound (487, Ar=4-ClCgHy,
X=COOMe) was ascertained by single-rystal X-ray diffraction.

The ring opening of 5-phenyl-6-methyl-4-methylsulphanyl-2H-
pyran-2-one-3-carbonitrile (488) by organic bases such as piperi-
dine and pyrrolidine (489) provided a mixture of two products, one
major product due to ring opening by pyrrolidine/piperidine to
yield a mixture of the Z- and E-isomers of 3-methylsulphanyl-4-
phenyl-5-pyrrolidin/piperidin-1-yl-hexa-2 4-dienenitrile>"> (490)
and another minor product due to substitution at C-4 of the pyran
ring (491) (Scheme 70).

On the contrary, the reaction of 6-phenyl-5-methyl-4-methyl-
sulphanyl-2H-pyran-2-one-3-carbonitrile (492), under analogous
reaction conditions, in the presence of piperidine afforded 6-phenyl-
5-methyl-4-(piperidin-1-yl)-2H-pyran-2-one-3-carbonitrile (493)
as a major product. The other minor product obtained was charac-
terised as a mixture of the E- and Z-isomers of 4-methyl-3-methyl-
sulphanyl-5-phenyl-5-piperidin-1-yl-penta-2,4-dienenitrile >'> (494)
(Scheme 71).
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6-Aryl-4-(piperidin-1-yl)-2H-pyran-2-one-3-carbonitriles (365c)
on stirring in alcohol in the presence of the respective alkoxide at
room temperature provided alkyl 2-cyano-5-oxo-5-phenyl-3-
(piperidin-1-yl)pent-2-enoates>'® (495), which on refluxing in the
presence of alkoxide in alcohol produced the carboxylic acids
(496) (Scheme 72). The same product was directly obtained by
refluxing 365c in the presence of alkoxide in alcohol.>"”

() ()

N

CN CN
/fi RONa D el ArcooH
A rt/stirring COOR
r O O Ar [0}
365¢c 495 496
R = Me, Et, t-Bu
Scheme 72.

The reaction of 365¢ with diethyl acetonedicarboxylate or ethyl
acetate in DMF at room temperature using powdered KOH as a base

afforded 495 in good yield. In this reaction, the ethoxide formed in
situ acts as a nucleophile to open the 2H-pyran-2-one (365c) ring to
yield 495 (Scheme 73).31

CH,COOEt
NN 2 KOH/DMF
| co ———— 495
A0 N0 CH,COOEt
365¢

Scheme 73.

5.2.6. Reactions at substituents

The methylsulphanyl substituent, being a good leaving group
at C-4 of 365b, is prone to simple substitution as well as sub-
stitution-cyclisation reactions involving the adjacent CN or
COOMe substituents, depending upon the experimental reaction
conditions. A base-catalysed reaction of pyran-2-ones (365b) with
compounds containing reactive methylene group such as di-
methyl malonate and acetylacetone gives substitution products>'®
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(497), while methyl cyanoacetate provided pyrano|[3,4-c|pyri-
dines (498)'® through substitution followed by cyclisation in-
volving the cyano substituent at C-3 of the 2-pyranone ring
(Scheme 74).

rR2 R
SMe “CH
N CN R' KoH X ON
| + H2C\R2 DMF |
Ar 0~ o Ar (O 6]
365b 497

R!, R2= COOMe, COMe

OH
MeOOC ZSNH
] °
Ar O (@]
498

Scheme 74.

A base-catalysed reaction of 365a,b with ethyl mercaptoacetate
under mild reaction conditions in alcoholic KOH provided fused
bicyclic compounds, thieno[3,2-c]pyran-4-ones>!® (499), in good
yields (Scheme 75). This reaction is initiated by an attack of mer-
captide ion at C-4, followed by cyclisation involving the substituent
at C-3 of the pyran ring.

COOEt
SMe S N\
o X X = CN N NH;
| * HSCHCOORL o halconol |
A0 N0 A 00
365a,b 499

Ar = Ph, subst Ph
Scheme 75.

Base-catalysed reaction of 2H-pyran-2-ones (365b) with
ethyl acetoacetate/ethyl benzoylacetate in DMF using pow-
dered KOH as base at room temperature provided two differ-
ent products,®?® one due to substitution at C-4 followed by
ketonic hydrolysis to yield ethyl (6-aryl-3-cyano-2H-pyran-2-
one-4-yl)acetates (500) and the other due to substitution-
cyclisation involving the adjacent cyano group to give
pyrano[3,4-c]pyran-3,4-diones (501) in nearly equal amounts
(Scheme 76).

SMe o
CN DMF/KOH
X
Ar” Y070
365b 505

CH,COOEt
COR CN
] KOH AN
365b + CH; —_ +
] DMF
500
Scheme 76.

Recently, we have reported a general methodology for the
synthesis of arylated 2H-pyran-2-ones and pyrano[3,4-c]pyran-1,8-
diones, depending upon the electron-withdrawing substituent
(nitrile or carbomethoxy) at position 3 of the 2H-pyran-2-ones
502a,b. The reaction of 3-cyano-4-methylsulphanyl-5,6-diaryl-2H-
pyran-2-ones 502a with deoxybenzoin afforded the 4-(2-oxo-1,2-
diarylethyl)-5,6-diaryl-pyran-2-ones 503 as the major products
through an unusual decyanation, while the eaction of 3-carbome-
thoxy-5,6-diaryl-4-methylsulphanyl-2H-pyran-2-ones (502b) with
deoxybenzoins furnished the pyrano[3,4-c]pyran-1,8-diones>?!
(504) exclusively (Scheme 77).

Art
SMe Ar3
A2 A X COAr* ©
| + CHy KOH AN
A" 07 o Ard DMF |
X =CN Ar’ [0 X 6]
502
a)X=CN ‘ X =COO0OMe 503
b) X = COOMe

Ar', ArZ | Ar®, Ar* = aryl, subst aryl

Scheme 77.

Itis conspicuous that the reaction of 365b with cyclopentanone in
DMF using powdered KOH as a base at room temperature provided
congested indans after the usual workup, while, with 2-carbo-
ethoxycyclopentanone (505), the course of the reaction was different,
due to the presence of the carbomethoxy substituent adjacent to the
carbonyl group which makes the position 2 of 505 more vulnerable to
nucleophilic attack. Thus, the reaction of 365b with 505 in the pres-
ence of KOH in DMF was initiated with substitution at C-4 followed by
ring opening of carbethoxycyclopentanone by methyl mercaptide ion
in situ to yield the thioesters (506)>? in high yields (Scheme 78).

/\_SMe (6_
(¢]

SMe
EtOOC \C'N —> EtOOC
| X | X CN
Ar” "O0” TS0 Ar” 07 o
Et
ooc COSMe
| o CN
Ar” 07 0
506

Scheme 78.
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The decarboxylation of the ester group at position 3 of the 2-
pyranones (365a) in poly phosphoric acid was effected by heating
at ~120°C for 4-5h to give the 6-aryl-3-methylsulphanyl-2H-
pyran-2-ones (507).237323 The CN substituent at C-3 of the 2-pyr-
anones (365b) in concentrated sulphuric acid is hydrolysed to
amide to yield the 6-aryl-4-methylsulphanyl-2H-pyran-2-one-3-
carboxamides (508) in high yields (Scheme 79).

75 °C under 20 kg/cm pressure, the ring was completely reduced to
6-methyl-tetrahydro-2H-pyran-2-one (516).3%6

Other reducing agents such as LiAlH4 and NaBH4 did not reduce
the pyran ring, but ring opened through attack at C-6. Reduction of
4,6-dimethyl-2H-pyran-2-one (517a) by LAH produced 3-methyl-
hexa-2,4-dienoic acid (518), while reduction of 517b with NaBH4
produced the dicarboxylic acid 5193272 (Scheme 83).

SMe SMe SMe
X PPA/100 °C X H2S04 Ny CONH:
| X = COOM l X =CN |
A0 Yo = e a0 o = Ar” 070
507 365a,b 508

Scheme 79.

The 6-methyl substituent in the 2H-pyran-2-one (509) is highly
activated, due to extended conjugation, and undergoes base-catalysed
condensation with aldehydes to form the 6-styryl-2H-pyran-2-
ones*?* (510) (Scheme 80). Similarly, the reaction of 5,6-dimethyl-
4-methoxy-2H-pyran-2-one 511 with aldehydes in the presence of
1 equiv of LDA afforded either 512 or 513, depending upon the
substrate used.?*6? This approach has been applied to the synthesis
of various natural products.>%*

OMe OMe

Me” Y0 Y0 Mg(OMe),  arHc=HC™ YN0 YO
509 510
OMe OMe OMe
Me Me Me
Me” ~0" Yo LDATHF R 070 R0 Y0
511 512 513
Scheme 80.

The hydroxy substituent at C-4 of the 2H-pyran-2-one (271) is
halogenated by refluxing in POCl3 to form the 4-chloro-2H-pyran-
2-one (514) and alkylated by different alkylating agents to give the
6-methyl-4-alkoxy-2H-pyran-2-ones such as 509 (Scheme 81).3?°

OMe OH Cl
N Mest4 N POC|3 N
| - I —_— I
Me” Y07 S0 KOs eSS0 Me” 0”0
509 271 514
Scheme 81.

5.3. Reduction

The reduction of 2H-pyran-2-ones strongly depends upon the
nature of the catalyst used. Hydrogenation of 6-methyl-4-hydroxy-
2-pyranone (271) in the presence of Ni or Pd-C at 5 kg/cm pressure
reduces only the 5,6-double bond to form 5,6-dihydro-4-hydroxy-
2H-pyran-2-one (515) (Scheme 82). On further hydrogenation of
dihydro-2-pyranone (515) in the presence of Pd-C and CuSOy4 at

OH OH
X Ni/H, Xy Pd-C/CuSO,
| - ihhatheteiubete A

Me” S0 So PdCHz  yoSNoSo M Me” 0”0
271 515 516

Scheme 82.

Reduction of 6-methyl-5-carbomethoxy-2H-pyran-2-one (362)
by hydrogenation in the presence of PtO; as the catalyst gave two
reduced products,?*® of which one is the tetrahydropyran-2-one
due to complete reduction of the pyranone ring (520) and the other
is the reduced ring-opened product (521) (Scheme 84).

5.4. Photochemical reactions

2-Pyranone rings underwent a wide range of photochemical
reactions to produce a variety of interesting chemical entities, some
of which are very difficult to obtain otherwise. The photolysis of
2-pyranones in aerobic and anaerobic conditions, as well as in
solvents, decides the course of reaction. Irradiation of simple 2H-
pyran-2-one 278 in an argon matrix between 8 and 20 K forms
a ketene (522), which is a reversible reaction.3?%2 Prolonged irra-
diation at a temperature of ~77 K leads to the formation of a lac-
tone (523) in high yields, which is a prime intermediate in the
butadiene (524) synthesis (Scheme 85). Warming of the solution of
the butadiene (524), causes decomposition to the dimer (525) and
acetylene 3282

Irradiation of a methanolic solution of 4,6-dimethyl-2-pyranone
(358) provides an inseparable mixture of two reactive lactones 526
and 527, which after mild acid treatment produced four different
isomeric ketoesters®2%? (528-531), while, in benzene using ben-
zophenone as a sensitiser, a symmetrical dimer (532) was formed
(Scheme 86).

Pyran-2-one pendant alcohols (533; n=1) on irradiation in
methanol in the presence of a catalytic amount of HCl were reduced
to the dihydropyrans (534), while a homologous substrate (533;
n=2, R=H) underwent an intramolecular 1,6-addition to furnish the
spirolactone (535) (Scheme 87).3%°

Solvents and the use of sensitisers greatly influence the course
of photochemical reactions. Photolysis of 2-pyranone (278) in
methanol gave an olefinic ester (536), while, in the presence of
a sensitiser, dimers (537 and 538) were isolated (Scheme 88).330
Irradiation of a solution of 2-pyranone (278) aerobically in 1,2-di-
chloroethane in the presence of a sensitiser gave a high yield of the
endoperoxide 539,23 which after decomposition provided the
diformylalkene 540 (Scheme 88).

Cycloaddition of cyclohexene to dehydroacetic acid (270) in the
presence of light produced a diastereomeric mixture of products?%8
(541) (Scheme 89).

5.5. Cycloaddition reactions

Cycloaddition through a Diels-Alder reaction is one of the best
methods, for stereocontrol led C-C bond formation in a single op-
eration. The Diels-Alder cycloadditions of 2H-pyran-2-ones (542)
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various natural products.3*>334 A classical example of the applica-
tion of the Diels-Alder cycloaddition of 2H-pyran-2-one is the
synthesis of the C- ring precursor of taxol reported by Nicolaou et
al.3*> The synthesis of C-ring precursor (546) of taxol is initiated by
the condensation reaction of phenylboronic acid with the diene, 3-
hydroxy-2H-pyran-2-one, and the dienophile, allyl alcohol, to form

=
Tl e El L W—» [~ 110 + wo=on

o ¢ Et,0,~ 75 K
522O 523 525
Scheme 85.

Me Me Me
Me” Yo~ g Methanol ved 0”0 Meeo oo
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Scheme 86.
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O (6]
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Scheme 87.

and their ring-substituted analogs with alkenes are synthetically
important and useful reactions.>3332 The first step in this reaction
is the formation of bridged bicyclic Diels-Alder cycloadducts. Un-
der forcing thermal conditions, these cycloadducts undergo loss of
CO; to afford cyclohexadienes and aromatise by loss of hydrogen or
by elimination to afford benzenes (543) (Scheme 90). The func-
tionally rich bridged cycloadducts are very valuable products for
the synthesis of highly functionalised six-membered rings, found in

aboronic ester 544 (Scheme 90). The boronic acid then underwent an
endo-Diels-Alder cycloaddition to furnish the bicyclic[2.2.2]lactone
545, which on conversion into the diol, followed by rearrangement
with the formation of a 5-membered lactone and ring opening of the
6-membered lactone, afforded the bicyclo[4.2.0]lactone 546 in good
yield.

The success of the Diels—Alder cycloaddition reactions depends
upon the electronic demand of the dienophile being compatible
with that of the 2H-pyran-2-one by means of appropriate ring
substitution, e.g., 3-phenylsulphanyl-2H-pyran-2-one (547) react-
ing with an electron-deficient>*® 337 dienophile to yield the cyclo
adduct 548 (Scheme 91).

It was found that 3-bromo-2H-pyran-2-one (342) and 5-bromo-
2H-pyran-2-one (551) have no electronic demand and react with
electron-rich, -poor and - neutral dienophiles with good regio- and
stereoselectivity>® to afford the compounds 549, 550 and 552, 553,
respectively (Scheme 92).

In most of the Diels—-Alder cycloaddition reactions, 2H-pyran-2-
one acts as a diene and forms numerous [4+2] cycloadducts, which
under thermal conditions are converted into arene cycloalkenes.
Thus, the reaction of 2H-pyran-2-one (278) with alkynes and silyl

alkynes such as 554 forms the disubstituted benzenes (555),33°340
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OH A similar strategy has been followed for the synthesis of 1,2-

COMe HH OH diphosphorylbenzenes. The cycloaddition of 2-pyranone (278) with

fi[ + @ hv Xy COMe diphosphorylacetylenes in 1,2-dichlorobenzene provides 60-80%
of the diphosphorylbenzenes (558) (Scheme 94) 34!

i ome © This strategy has successfully been used in the synthesis of

541 cyclophanes.3#? Under cycloaddition conditions, the reaction of two

Scheme 89. moles of 2-pyranone (278) with one mole of a tetrasilylcyclobutyne

in toluene (containing triethylamine) yields the [2,2]orthocyclo-

R1
X 2
o [ R
K\ R3 >, R2 -CO, R1:_<j
0" o % Z R3
R3

R + R2X
542 543
o i
B . B
OH OH N\ endo-Diels-Alder o o HO
o N PhB(OH), [e) 0O reaction rearrangement
+ ————> O - o “H
Owr | A Y
COOE P | & COOEt
COOEt
544 545
Scheme 90.

5P SPh phane (559) (Scheme 95). On changing the solvent from toluene to
EI r Me0OCT O>’ COOMe bromobenzene, the [2,2]metacyclophane (560) was obtained in
o Yo d 22% yield. Prolonged heating of the [2,2]orthocyclophane (559)
547 548 forms the [2,2]metacyclophane (560) in only 12% yield.
The 2H-pyran-2-one (561) with an electron-withdrawing sub-
stituent at C-3 underwent cycloaddition reactions to form initially

| X Br o Br o Br
+ MeooC T ) CooMe =y,
0o 0 COOMe

Scheme 91.

(0]
342 549 550
5-endo (80%) 6-endo (15%)
Br
Br AN o gr
| e meoc”N sy -coome Oy
(0] 0] o o COOMe
551 552 553
5-endo (89%) 6-endo (11%)
Scheme 92.

and the 1,2-disilyl-substituted benzene (556), which in the pres- a cycloadduct which on loss of CO, at ~ 60 °C produced cyclo-
ence of acid rearranges to the 1,3-disilyl-substituted benzene (557) hexadiene, and aromatised with elimination of HX to 1,3-di-
(Scheme 93). substituted arenes 562 (Scheme 96).
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: \S/i-\Si/ : Ssi-si”
/S\i_/Si\ /SI\_SI\ The same strategy has been followed for the synthesis of various
N natural products (570), starting from the reaction of 4-methyl-6-
5% 560 methoxy-2H-pyran-2-one  (568) with  substituted naph-
Scheme 95. thoquinones (569) (Scheme 99).345:346

561 R

Scheme 96.

A 2-pyranone diene (563) reacts with norbornadiene to produce
a substituted arene>*? (564) in 90% yield after elimination of CO,
and cyclopentadiene (Scheme 97).

COOMe CF3
N 150 °C
| + 7 Co >
NoogNo) -Csﬁs COOMe
563 564
Scheme 97.

The normal electron-demand [4+2] cycloaddition between 3-
methoxy-2H-pyran-2-one (565) and quinones (566) produced the
anthraquinone analogs (567) in good yields (Scheme 98).344

The Diels-Alder cycloaddition of an electron-deficient 2-pyr-
anone diene with an electron-rich dienophile such as enamine is
one of the examples of an inverse electron-demand reaction. The
reaction of a substituted coumalate (571) and enamines (572) in
refluxing toluene yields the regioisomerically pure dihydrobenzenes>#
(573) (Scheme 100).

Cycloaddition of various electron-poor 2-pyranones (574) with 1H-
cyclopropylbenzene (575) in THF at 50-55 °C provides highly strained
cycloadducts with loss of carbon dioxide and ring opening of the
cyclopropyl ring and formation of annulenes (576) (Scheme 101).348

Similarly, cycloaddition of 1,2,3-triphenylcyclopropene (577)
with unsubstituted 2-pyranone (278) initially formed the cyclo-
adduct with concomitant elimination of CO; and ring enlargement
to provide 1,6,7-triphenyltropylidene34° (578) (Scheme 102).
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5.5.1. [2+2] Cycloaddition reactions
Me (\O There are not many examples of [2+2] cycloaddition reactions
EtOOC r\j\l\ @ Me N \) using 2-pyranone as a precursor. Photosensitised cycloaddition of
| . [ o K;: 4,6-dimethyl-2H-pyran-2-one (358) with an electrophilic olefin
Me” ~07 o R EtOOC R (581) yielded three types of cycloadducts (582), (583) and (584)
Me (Scheme 104).3%2
571 572 573
Scheme 100. 5.5.2. [3+2] Cycloadditions

.
R X
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574

N Ph R
| + Ph
0" o
PH
278 577

Allenes (579) like alkenes react with an electron-rich
anone (568) to form the cycloadducts and, finally, after elimi

of CO, are converted into the substituted homophthalates (580)

with high regiospecificity (Scheme 103).35031
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Not much literature is available on the [3+2] cycloaddition
reactions. A [3+2] cycloaddition occurs when an electron-poor
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R
o R .
/ - L2
R’ ~ R’
576
[10]annulenes
Scheme 101.
(6]
Ph Ph
A | Q
7
ph " PH Ph
Ph 578
Scheme 102.
2-pyr- 2-pyranone (585) reacts with trimethylenemethane 586 in the
nation presence of a palladium catalyst ([Pd(PrOs)P],) to form a cyclo-
adduct®>3 (587) in 71% yield (Scheme 105).
(6]
M
Me_ O e COOR
—_—
7 COOR COOR
MeO COOR OMe
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Scheme 103.
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Scheme 104.
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5.5.3. [4+2] Cycloadditions

In certain cycloaddition reactions, 2-pyranone acts as a dieno-
phile and reacts with the diene under high pressure in the presence
of light to yield dimers. Methyl coumalate (277, R?>=Me) on reaction
with acyclic dienes (588) forms cycloadduct products (589)
(Scheme 106).3%4

2
RZOOC\(i R A _ GOOR R
SUEDHE IS
0”0 R’ 0”0 R?
277 588 589

Scheme 106.

5.5.4. [3+3] Cycloadditions

6-Aryl-4-hydroxy-2H-pyran-2-ones (590) undergo a formal
[34+3] cycloaddition with enols. Thus, the reaction of 590 with
Me,C=CHCHO produces an adduct 591 (Ar=Ph) in 73% yield
(Scheme 107) via the preliminary formation of piperidine im-
inium condensation products obtained from the reaction of the
acetal with piperidine in ethyl acetate containing AcO at
85 OC.355

OH 1)
A
| + (Mepc=cHcHo  —= . F T ©
Ar” 070 WA
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Ar=Ph
Scheme 107.
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89 °C

5.5.5. [4+3] Cycloadditions

An electron-rich 2H-pyranone diene (592) reacts with a trime-
thylenemethane palladium complex to form the [4+3] cyclo-
adduct®®? (593) in 89% vyield. A thermal cycloaddition of
cyclopropenone ketals also gives the [4+3] cycloadduct (594),3°°
but the reaction under high pressure at 25°C forms the [4+2]
cycloadduct (595), which finally yields cycloheptatrienone (596)
(Scheme 108).

5.5.6. [6+4] Cycloadditions
Fulvene ketene acetal (597) on reaction with unsubstituted 2H-

pyran-2-one (278) gives the [6+4] cycloaddition product, an azu-
lene (598) (Scheme 109).3°7

o__ O
X
QL L —
[0
218 597

Scheme 109.

O/\/OH

5.6. Miscellaneous reactions

Interactions of enaminones such as 599, derived from 3-acetyl-
4-hydroxy-6-methyl-2H-pyran-2-one, with hydroxylamine in the
presence of aqueous alkali yield pyranopyridine derivatives 600
and 601 (Scheme 110).3°8

4-Hydroxy-6-methyl-2H-pyran-2-one (271) reacts with triethyl
orthoformate (602) to form a pyrano[4,3-b]pyran-2,5-dione (603)
through condensation-cyclisation (Scheme 111).3*° Further, re-
action of 2-pyranone (271) with 3-bromochromone (604) yielded
a furopyran derivative (605) through a ring transformation of the
chromone.3¢°

The condensation of 4-methoxy-6-methyl-2H-pyran-2-one
(509) on condensation with methoxymethyl benzoate (606) led to
the production of a semivioxanthins (607) (Scheme 112).36!

Pyrano[4,3-b]quinolin-1-ones (610) have been synthesised
(Scheme 113) from the reaction of 4-chloro-6-methyl-3-vinyl-2H-

0
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0
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O 4
o
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o
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Scheme 108.
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pyran-2-one (608) and aromatic amines (609) bearing an electron-
donating substituent at position 3 of the ring.36?

An enaminone (611), derived from the condensation of 3-acetyl-
4-hydroxy-6-methyl-2H-pyran-2-one and DMF dimethylacetal, on
reaction with 1,4-benzoquinone (612) yields benzofuranopyran
(613), while on reaction with hippuric acid, pyranopyran 614 has
been isolated (Scheme 114).363

614

A
NH
OH | A OH O
| A O O hippuric acid /lf\t'\fk/\N(Me)z
Me [ONe] Me o~ Yo
611

6. Conclusions

The necessity of finding molecules of unlimited potential for
generating molecular diversity has always been realised by syn-
thetic organic and medicinal chemists. Such molecules are the
source of a vast molecular reservoir of immense synthetic appli-
cations in natural product synthesis, drug development, organic
conductors, semiconductors, asymmetric catalysts and agrochem-
icals. The creation of molecular diversity by such molecules is based
upon their for C-C and C-heteroatom bond-forming ability. We
envisage a vast synthetic potential in suitably functionalised 2-
pyranones. Numerous 2-pyranones either from natural or synthetic
origin are known, but not all are suitable substrates for the ring-
transformation reactions, although they may undergo substitution,
addition and elimination reactions leaving the ring skeleton intact
(with some exceptions). Recently, the oxidative rearrangement of
6-methoxypyran-2-ones by molecular oxygen to highly function-
alised o,B-butenolides has been reported, otherwise 6-alkyl/aryl-4-
methylsulphanyl/sec-amino-2H-pyran-2-one-3-carbonitriles/car-
boxylates are found as novel precursors for the ring-transformation
reactions. The topography of these 2-pyrones is such that they
possess three electrophilic centres C-2, C-4 and C-6 in which latter
is highly electrophilic, due to extended conjugation and the pres-
ence of an electron-withdrawing substituent at C-3 of the pyran
ring. The C-6 position of 2-pyranone is highly susceptible to nu-
cleophilic attack by carbon, nitrogen and sulphur nucleophiles,
followed by ring closure involving either the C-3 or C-4 positions to
yield ring-transformed and -contracted products, depending upon
the nature of the attacking reagents. The order of reactivity of the
three electrophilic centres is C-6>C-4>C-2. Depending upon the
the nucleophilicity of the nucleophiles, a substitution reacteion can
also take place at C-4, followed by the ring closure involving the
substituent at the C-3 position. Occasionally, the ring opening by
strong nucleophiles has been observed through attack at C-2 of the
pyran ring.

The other approach to generate molecular diversity that has
been extensively studied is the Diels-Alder reactions using 2-pyr-
anones as dienes as well as dienophiles. These reactions provide
arenes, heteroarenes and ring-expanded and annelated products,
depending upon the electron-poor and -rich 2-pyranones used as
the diene or dienophile, but have synthetic limitations of harsh
reaction conditions, high pressure and the requirement of electron-
rich and -poor 2-pyranones.

Thus, 2-pyranones are very useful synthons for the construction
of arenes such as biaryls, 1,2-, 1,3- and 1,4-teraryls, tetraaryls,

OH O
o) 612 N =
| O OH
Me’ [O6]

613

Scheme 114.
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oligoarenes, and annulated arenes, as well as aryl-tethered heter-
oarenes such as pyrazoles, isoxazoles, pyridines, pyrimidines,
quinolizines, pyrazolo[1,5-a]pyridines, deazalumazines, azaanthra-
cenes, dibenzofurans, imidazo[2,1-b]thiazines, azolo[3,2-a]pyrimi-
dines and many other biologically active ring systems. Thus, suitably
functionalised 2-pyranone has unlimited synthetic potential for the
construction of a variety of arenes and heteroarenes by manoeu-
vering the reactants for the ring-transformation reactions.
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